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The workings of the heart

Normal cardiac electrophysiology represents the complex interplay among multi-

ple, often redundant, components – Dan M. Roden (2010).

Diseases [...] represent emergent properties at the scale of the organism that

result from dynamic interactions between multiple constantly changing molecular

factors – James N. Weiss et al. (2015).

The role of modeling

A model is something simple made by a scientist to help him understand some-

thing complicated – Richard FitzHugh (1969).

The joy of experiments

Even though the extent of my ignorance and confusion was more clearly revealed,

I was very pleased by the direct records of the amplitude and currents – Kenneth

S. Cole (1968), about performing the first ever voltage clamp experiments.

and the impact of a novel concept

It is easy to fail to think of an idea that with hindsight seems very obvious. –

Andrew Huxley (2002), about the concept of ion channels, which he did not have

when he (co-)created the first ever models of ionic currents.



CHAPTER 1

Introduction

The rhythmic beating of the human heart powers our circulation, distributing oxygen and

nutrients to the body and carrying off harmful waste. In line with this vital function, dis-

eases of the heart and circulatory system are among the most common causes of death,

accounting for 28% of all deaths in the Netherlands (Buddeke et al., 2015) and an estimated

31% worldwide (WHO, 2016). The heart’s rhythm is regulated by electrical activation and

recovery, and the study of these processes is known as cardiac electrophysiology. Under-

standing the rhythm of the heart requires dealing with its complexity: efficient contraction

requires a coordinated action of the approximately five billion muscle cells (myocytes) in the

heart. It involves the flow of ionic currents through channels formed by small macromolec-

ular complexes, propagation of signals from cell to cell, and much larger structures such

as the specialized conducting fibers connecting different parts of the heart. To handle the

complexities inherent to cardiac function in health and disease, computational models have

been introduced that describe the function of ion channels, cells, tissue, and the heart as a

whole. The process of creating and analyzing models that connect these spatial scales, as

well as the different time scales involved, is known as multi-scale modeling (Southern et al.,

2008). A broader introduction to the computational modeling of cardiac electrophysiology

is given in Chapter 2.

This thesis deals with the computational modeling of the electrical characteristics of cardiac

myocytes, starting from a single healthy myocyte, and extending the analysis to include lower

levels (such as ion channels and genes), higher levels (such as coupled cells and tissue), and

disease mechanisms. The central question is how we can use computational tools to organize

this problem, to make sense of the available experimental data and to try and reduce the

resulting complexity without losing the ability to investigate the influences of microscopic

changes. This is especially pertinent in the light of recent insights into the importance

of cell-to-cell, person-to-person and even day-to-day variability in disease mechanisms and

responses to treatment (Marder and Goaillard, 2006; Weiss et al., 2012).

Within this broader problem statement, five different topics are addressed. In Chapter 3,

we review existing tools for modeling and simulation of the cardiac action potential (AP)
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Chapter 4

Chapter 6

Chapter 5

Chapter 7

Figure 1.1: Graphical overview of the thesis chapters and the spatial scales they connect. In Chapter 3 we
show how our tool Myokit can be used to fit ion-current models to patch-clamp data, incorporate them into
cell models and run simulations at the tissue level. Chapter 4 then investigates methods to increase the
size of simulated tissue patches. In Chapter 5 we examine whether or not variability at the ionic current
level can occur in the absence of variation in the underlying channel gene. Chapter 6 investigates whether
machine-learning methods can be used to predict the effects of genetic mutations on ion-current properties.
Finally, in Chapter 7 we use highly-simplified whole-heart models to link the cell level to the whole-organ
level, and use electrocardiographic imaging to examine the heart from the body level.

and find there is room for a tool with a specific focus on AP model development. We then

go on to describe Myokit, the result of our efforts to build such a tool. In Chapter 4 we

investigate a potential method of speeding up calculations with the goal of extending our

reach by simulating larger numbers of cells. We then focus on the ionic current INa, which

has been linked to a wide variety of arrhythmias. In Chapter 5 we investigate if variability

in the kinetics of INa can be observed, and in Chapter 6 we investigate if we can predict

the changes to INa caused by genetic defects. Finally, in Chapter 7 we ask if AP models

can be used to improve reconstructions of heart-surface potentials from noninvasive body-

surface potential recordings, and we investigate the level of detail these models require to

be successful. A graphical overview of the spatial scales addressed in the main chapters is

given in Fig. 1.1.

1.1 Thesis outline

We now discuss the contents of the thesis in some more detail.

Chapter 2 discusses important background information: the role of bioelectricity in the

heart is explained and models of the cellular AP and ion channels are introduced.

In Chapter 3, we present Myokit, a computational tool to simplify development and anal-

ysis of models of the cardiac AP. Models of the AP provide a unique bridge between the

sub-cellular, cellular, and tissue-levels, allowing multi-scale modeling and investigation of

cardiac function and disease. Given the overwhelming complexity of cardiac physiology

and pathophysiology, providing easy-to-use tools is a critical task: it broadens the scope
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Chapter 1

of individual researchers, aids newcomers into the field and helps shift the focus from com-

putational to biological complexity. In addition, Myokit experiments can easily be run on

several models, which is a first step towards their systematic comparison and synthesis.

Following this, in Chapter 4 we propose and investigate a novel method of speeding up

simulations by replacing slow-to-evaluate mathematical expressions with faster approxima-

tions using splines. While a successful implementation would allow larger numbers of cells

to be investigated, we find that splines provide a significant speed-up only for single-cell sim-

ulations with relatively small models of the AP. In addition, the benchmarking performed

in this chapter provides insight into the workings and performance of the main simulation

engines used in Myokit.

In Chapter 5 we look at differences in INa measured in cells expressing the same channel

DNA. Using novel measurements and results from identifiability theory we show that there

is variability in the time constants of inactivation of INa and that this exceeds the variability

expected from noise or imperfect experimental control. We conduct a literature review into

reported midpoints of (in)activation for INa and find variability in individual studies, but

an even greater variability between studies. This work provides modelers with quantitative

data on cell-to-cell variability, which has been singled out as one of the most important

future challenges for the modeling of cardiac cellular electrophysiology (Abriel et al., 2013;

Mirams et al., 2016).

Chapter 6 addresses the question of genotype-phenotype relations in ion-channel related

cardiac diseases. We hypothesize that the step from cell-level effect to clinical phenotype is

affected by inter-subject variability, but that the step from gene to ion-current phenotype

has a stronger deterministic character, especially when investigated in the controlled setting

of expression system experiments. To test this hypothesis, we focus on missense mutations

in SCN5A, the gene expressing the pore-forming alpha-subunit of the channel carrying INa.

These mutations have been associated with a wide spectrum of clinical phenotypes (Remme,

2013). We collect a large number of INa measurements from the literature and then use visual

inspection and machine learning techniques to show that, even in single-cell experiments in

expression systems, the link between channel mutations and current-phenotype is difficult

to characterize.

In Chapter 7 we examine the cardiac electrical signals that can be measured on the body

surface. With electrocardiographic imaging (ECGI) we can use these body-surface potentials

to reconstruct the electrical potentials on the heart (Cluitmans, 2016). We show that, by

simulating beats originating from different locations on the heart, we can create a basis of

‘realistic’ patterns of heart surface potentials that can be used to reduce the error in such

reconstructions. By comparing detailed and simplified models, we show that for this purpose

the resulting activation patterns on the heart surface are more important than the precise

characteristics of the individual cellular APs.
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Introduction

In Chapter 8 we discuss multi-scale modeling, simulation, and systems biology approaches

to cardiac electrophysiology and pathophysiology. We highlight some of the challenges spe-

cific to this field, show uses of simulation at different scales, and discuss the reliability of

such work. We conclude with a discussion of variability in multi-scale models of the cardiac

AP.

1.2 Models and experiments

This thesis deals predominantly with computational models of the cardiac AP. Although

the benefits of a combined modeling-experimental approach have been highlighted before

(see for example Carusi et al., 2012; Heijman et al., 2015; Noble et al., 2012; Smith and

Niederer, 2016) we now briefly discuss some of the advantages of modeling and the benefits

of a tight integration of model and experiment (Noble and Rudy, 2001; Quinn and Kohl,

2013; Devenyi and Sobie, 2016).

Computational modeling allows the complex interplay between the various processes leading

to the heart’s contraction to be simulated and analyzed. This allows experimental scientists

to work in a ‘reductionist mode’, gathering data on subprocesses (for example individual

ion currents) and then combining their findings into an integrative model. As modern AP

models are increasingly complex (Heijman, 2012) and contain many non-linear phenomena,

the need to augment human intuition with simulations and numerical analysis steadily grows.

Models form a summary of years of experimental data and mechanistic insights. Using

simulation, particularly with easy-to-use tools like Myokit, a modeler can quickly familiarize

him- or herself with complex cellular functions. In contrast to physical experiments, all

variables in such a simulation can be inspected simultaneously without interfering with the

virtual experiment in any way. At the same time, if we want to interfere, any variable can

be perfectly controlled.

Apart from the educational benefits, this perfect control allows simulations to be used to

test our ideas, not by showing if a hypothesis is correct, but by showing if it is plausible.

In other words, while we cannot test a hypothesis against biological reality using a model,

we can test if it is internally consistent and does not clash with what we know so far. This

brings us to the next point, which is the relationship between models and experiments.

Experiments can be time-consuming, expensive, and in the case of human testing or animal

experiments, they require careful ethical consideration. Models and indeed simulated exper-

iments are no substitute for this work, but they can help to interpret experimental findings,

to extrapolate from the results, and to improve the design of experiments (see for example

Clerx et al., 2015). In this way, modeling increases the power and value of experimental

work, and may help reduce the need for human and animal testing.
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CHAPTER 2

Background:

Bioelectricity in the human heart

Abstract

This chapter provides some of the biological and modeling background needed to read this

thesis. References to more detailed works are given throughout the text.

The heart uses bioelectrical signals called action potentials (APs) to coordinate its contraction.

These signals originate at the cellular level, and are caused by the movement of charged

particles (ions) through channels and transporters in the cell membrane. Action potentials

propagate from cell to cell, creating traveling waves of excitation that trigger contraction of

the heart muscle. The aggregate electrical currents through the billions of muscle cells in the

human heart give rise to a signal powerful enough to be measured on the body surface: the

electrocardiogram or ECG.

Using modern measurement techniques and novel pharmacological compounds, it has become

possible to study the ionic currents through several distinct ion channels and transporters.

Each of these currents can be described using numerical models, and models of currents can be

combined into models of the cardiac cellular AP. These models describe the complex interplay

between the currents and can even capture subcellular processes, including the release of Ca2+

which triggers the cell’s contraction. Models of the single-cell AP can be combined into models

of coupled cells, of patches of tissue and ultimately of the electrical system of the whole heart.
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Chapter 2

2.1 Bioelectricity in the human heart

For all its complexity, the heart functions as a two-sided pump. Its right side pumps blood

into the lungs to be oxygenated (the pulmonary circulation), after which it returns to the

left side of the heart which pumps it to the rest of the body (the systemic circulation). Each

side has an atrium, which functions as a receiving chamber and a preloading pump for the

larger ventricle, which performs the main pumping action. The heart’s capacity to pump

efficiently comes from its ability to perform coordinated contractions: First, both the left

and right atrium (LA and RA) contract, filling the left and right ventricles (LV and RV).

Next, the ventricles contract, sending blood into the aorta (from the LV) and pulmonary

artery (from the RV). A schematic overview is given in Fig. 2.1.A.

This timed sequence of contractions arises from the individual contraction of each of the

heart’s muscle cells, which are known as cardiac myocytes. As the heart contains around

five billion of these cells (Olivetti et al., 1995) this requires a high degree of synchronization.

This is achieved through the use of bioelectricity. Like neurons, myocytes have evolved to

sustain a brief electrical pulse and pass it on to their neighbors, causing the spread of an

electrical signal in a ‘Mexican wave’ style (Welsh et al., 2017). This propagating cellular

electrical signal is known as an action potential 1 (AP).

In addition, the heart contains smaller numbers of cells with specialized electrical functions:

the cells of the sinoatrial (SA) node show spontaneous excitation (i.e., they spontaneously

generate APs). This occurs about once per second, although this rate is regulated by different

mechanisms in response to varying energy demand. In healthy conditions, the SA node sets

the pace for the rest of the heart. From the SA node’s location at the top of the right atrium,

its electrical waves spread over the right and left atria through cell-to-cell conduction. This

electrical excitation triggers contraction of the atrial muscle cells via excitation-contraction

coupling (Bers, 2001).

The atria are electrically shielded from the ventricles, causing the propagating AP to halt

at the atrial borders. Activation of the ventricles occurs via a second group of specialized

cells which together form the atrioventricular (AV) node. Signals from the SA node reach

the AV node, where they are slightly delayed while the atria contract and fill the ventricles.

Next, the signals travel down conducting Purkinje fibers in the septum (the muscle wall

which separates the LV and RV) towards the tip (or apex ) of the heart. From there, they

spread over the ventricular walls causing both ventricles to contract and perform a powerful

pumping motion. A schematic overview of the heart’s electrical conduction system is given

in Fig. 2.1.B.

1 Readers with a background in physics may wish to note that it is not a potential in the physical sense
of the word, i.e., it is not a measure of energy or electrical potential but simply the name given to a short
electrical event.
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Figure 2.1: (A) Basic anatomy of the heart. Oxygen-depleted blood enters the right atrium (RA), is
transported to the right ventricle (RV) and then pumped to the lungs. From the lungs, oxygen-rich blood
enters the left atrium (LA) and then the left ventricle (LV) from where it is pumped into the aorta and
then to the body. (B) A schematic overview of the heart’s conduction system. Excitation starts at the
sinoatrial node (SA) and travels over the atria before being propagated to the atrioventricular node (AV),
where it is slightly delayed before being propagated to the ventricles. (C ) A cross-section of a cell membrane,
containing an ion channel. The shape of the channel is based on Payandeh et al. (2011). (D) A network of
myocytes, connected by gap junctions.

2.2 The cellular action potential

How can cells conduct electrical waves? The answer depends crucially on the cell mem-

brane, a thin water-insoluble layer that separates a cell’s interior from its environment. The

membrane is composed of phospholipids that have a polar (and hence hydrophilic) head

and a non-polar (hydrophobic) tail. This property causes them to organize into a lipid bi-

layer, with heads pointing out and tails pointing in towards the center of the membrane

(see Fig. 2.1.C). The non-polar core acts a strong electrical insulator, blocking the passage

of any polar or charged particles, including naturally present ions such as sodium (Na+),

potassium (K+) and calcium (Ca2+). As a result, a cell can contain different concentrations

of ions than the fluid outside it, allowing a difference in the density of electrical charge to

arise. This charge imbalance can be expressed as an electrical potential difference called the

membrane potential. Membrane potentials can be measured, and are usually in the order of

tens of millivolts (about −100 to +50mV in a cardiac cell). When ions move in or out of

the cell, the membrane potential changes, producing the so called action potential.

Wedged into the cell membrane of cardiac myocytes are several proteins, some of which

have remarkable properties. Ion channels are large macromolecular complexes that, under

certain conditions, can ‘open’ to form an aqueous pore that allows ions to pass through the

membrane. Most ion channels are highly selective, and include a narrow funnel-like structure

whose electrochemical properties are such that only a single species of ion can pass through.

The direction of movement depends on the ion’s concentration gradient and the membrane

potential. Some channels open and close only after binding to certain chemicals, but this

thesis deals exclusively with ion channels that open and close in a voltage-dependent manner.
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Chapter 2

A cartoon of an ion channel inside a cell membrane is shown in Fig. 2.1.C.

In addition to ion channels, the membrane contains so-called pumps that transport ions

from one side of the membrane to the other. Pumps move ions against their chemical

and/or electrical gradient, and the energy required to do so is obtained by breaking down

ATP (adenosine triphosphate) into ADP (adenosine diphosphate). Similarly, co-transporters

and exchangers move ions against their gradient, but they derive their energy from the

simultaneous movement of a second type of ion, along its gradient. Pumps, exchangers and

co-transporters are collectively known as transporters (Molleman, 2003).

Finally, myocytes are connected to their neighbors via special channels known as gap junc-

tions. These form large, non-specific pores that allow strong ionic currents to pass between

cells. Although gap junctions are weakly voltage sensitive, it is usually adequate to think

of them as continuously open channels (Gros and Jongsma, 1996). Myocytes are around

140µm long and 25µm wide (Volders et al., 1998) and are usually arranged in a grid with

similarly oriented cells. Most connections are at the short end of the cells, leading to faster

AP propagation along the longitudinal axis of the fibers. A group of myocytes connected

by gap junctions is shown schematically in Fig. 2.1.D.

2.3 Modeling the action potential

In a groundbreaking series of papers published in 1952, Alan Hodgkin and Andrew Huxley

presented the first computational model of a cellular AP (Hodgkin and Huxley, 1952a,b,c,d).

By carefully measuring the different currents passing through the membrane of a squid axon,

they were able to create models for the three main components of the axon’s AP: a current

carried by Na+, one carried by K+, and a ‘leakage’ current carried by anything else. They

found that the size and shape of each current is strongly dependent on the membrane

potential. As the membrane potential is a direct result of the ionic concentrations in and

outside the cell, it changes when ions move across the membrane. This creates a feedback

loop, shown in Fig. 2.2 (left), where the membrane potential determines the transmembrane

currents and the transmembrane currents determine the membrane potential. As a result,

the process is best described as a dynamical system.

In computational models of the AP, variables are defined that represent the membrane

potential, intracellular ion concentrations, and the state of all ion channels and transporters.

Next, differential equations are defined that, given the model state at some time t, provide

the derivatives of all variables. In other words, given the current state of the cell, they

specify how it will change. This knowledge can then be used to make a prediction for the

state of the model at time t+ ∆t, and by doing this repeatedly (with very small time steps

∆t) simulations can be run (for a detailed overview of this and similar methods, see any

book on numerical integration of ordinary differential equations).
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Figure 2.2: A classic (left) and updated (right) view of the feedback loop underlying models of the cellular
action potential. In the classic view, the membrane potential Vm determines the channel states, which
determine the ion currents through the membrane. The sum of the ionic transmembrane currents then
determines the change in the membrane potential. To the right, an updated view is given where not only
changes to Vm are modeled, but additional work is done to keep track of ionic concentrations in crucial parts
of the cell. Ion channels, pumps, exchangers and even diffusion currents are modeled, all of which can be
affected by stimuli from outside the cell. Particular attention is paid to the processes that determine the
free Ca2+ concentration in the cell, which ultimately leads to contraction. Adapted from Hille (2001).

To give all this a mathematical representation, we define the membrane potential Vm as

Vm = Vin − Vout

where Vin and Vout are the electrical potentials inside and outside the cell respectively. Next,

we define a positive current, as one that carries charge out of the cell (thus lowering Vin,

raising Vout and decreasing Vm). The change this causes to the membrane potential is

captured by the equation
dVm
dt

= − 1

Cm
I

where Cm is the membrane capacitance and I is the sum of all transmembrane currents. In

Hodgkin and Huxley’s model, this results in

dVm
dt

= − 1

Cm

[
INa + IK + Ileak

]
.

Here, INa, IK and Ileak represent the sodium, potassium and leak current respectively. Later

models added new currents and refined the existing ones, leading to a more complicated

equation but following the same general form (see Chapter 3). A detailed introduction to

AP modeling can be found in Rudy and Silva (2006). The next step is to model the ionic

currents, which is discussed in the following section.

2.4 Modeling ionic currents

Models of ionic currents start from Ohm’s law I = ∆V/R, where I is the current, R is an

electrical resistance and ∆V is a difference in electric potential. Instead of using resistance,

current modelers use conductance G = 1/R, with the S.I. unit siemens or S. The appropriate

voltage difference ∆V is determined by a combination of electrical forces and diffusion:
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When channels are open, ions can diffuse from the side with the higher concentration to

the side with the lower. But since ions are charged they are also affected by the presence

of any electrical field. Thus, ion currents depend on chemical as well as electrical gradients.

Currents will flow until these two forces reach equilibrium at a potential E, known as the

Nernst or equilibrium potential. In other words, they will flow until ∆V = Vm − E = 0.

For convenience, a changing conductance is usually written as the product of a dimensionless

time-variant term g
(
Vm(t), t

)
and a fixed factor ḡ that can be used to scale the current, for

example to model different cell sizes, changes in the number of channels (due to regulation

of genetic expression) or drug-induced block. This results in a general equation of the form

I = ḡ · g · (Vm − E)

There are two main formalisms used to model the variable conductance term g: Hodgkin-

Huxley style models and Markov models. Both will be discussed below. For a major reference

work on ion channels and ion channel models, see Hille (2001).

2.4.1 Hodgkin-Huxley models of ionic currents

The current models introduced by Hodgkin and Huxley (HH) describe the conductance term

g as the product of one or more dimensionless variables, whose value can vary between 0

and 1. Each variable can appear in the product once or multiple times (i.e., some variables

are raised to an integer power). For example, for the sodium current INa, HH introduced

the variables m and h, with m appearing three times, to obtain:

INa = ḡNa ·m3 · h · (Vm − ENa)

where ENa is the reversal potential for Na+, which depends on the Na+ concentrations in and

outside the cell. Intuitively, the term m3 ·h can be thought of as a series of three synchronized

m-type gates, followed by a single h-type gate, where the m and h-type gates open and close

independently of each other. The variables m and h then represent the proportion of gates

in the membrane that are in the open state. If all gates are open (m = h = 1) the current

is at its peak, but no current can flow if either m or h is zero.

Opening and closing of a gate is modeled as a chemical reaction:

closed
α−⇀↽−
β

open

where α and β are the opening and closing rates (in units 1/second). We can then write

an equation that shows how a proportion such as m changes over time (we use m in the

example, but equations of the same form are used for h or any other gating variable):

dm

dt
= αm(1−m)− βmm
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Figure 2.3: The steady states (left) and time constants (center) for gating variables m and h, calculated
from the equations for the sodium current given in (Hodgkin and Huxley, 1952d). The current elicited by a
voltage step from −120mV to −20mV is shown on the right. Before the voltage step (t < 1) a low membrane
potential Vm = −120mV is maintained. At this voltage, the model is not activated (m = 0) and completely
recovered from inactivation (h = 1), as can be seen in the left panel. At t = 1ms, the potential is quickly
raised to −20mV causing the model to activate (m→ 1) with a speed dictated by τm. It also immediately
starts inactivating (h→ 0) but this happens at a lower speed than activation (center panel), leading to the
temporary appearance of an ionic current (lower right panel). After a few milliseconds at −20mV, the model
is fully activated (m = 1) but also fully inactivated (h = 0) so that a current can no longer be observed.

This is often rewritten in the form dm/dt = (m∞ − m)/τm with m∞ = αm/(αm + βm)

and τm = 1/(αm + βm). With this formulation, it can be seen that every gate variable (in

this case m) approaches a steady state value (m∞) with a speed determined by some time

constant (τm). The steady state and time constant are taken to be the voltage dependent

parts of the system, so that
dm

dt
=
m∞(Vm)−m

τm(Vm)

The process of fitting a HH-style model to a current, then, is the process of: 1. Postulating

the number of gate types (typically using the smallest number that can fit the observed

data). 2. Measuring the steady states and time constants for a range of values of Vm. 3.

Choosing equations to fit this data and finding the parameters that give the best match.

4. Tweaking the result by adding powers to the gating variables (again, using the smallest

power that gives an adequate fit).

The steady state and time constant curves obtained by HH for the sodium current in the

squid axon are shown in Fig. 2.3. These curves were highly influential for the methodology

and terminology of cellular electrophysiology. The variable m became known as an acti-

vation variable, with the transition from m = 0 to m = 1 known as activation and the

reverse process sometimes known as deactivation. Similarly, the decrease in h seen at higher

potentials is now known as inactivation, while its transition back to 1 is called recovery from

inactivation, or simply recovery. The potential at which m∞ = 0.5 is known as the midpoint

of activation and the point at which h∞ = 0.5 is the midpoint of inactivation. These terms

have stuck, and are often used outside the context of modeling or even when discussing

competing current model formalisms.
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2.4.2 A note about identifiability

The steady states and time constants of HH-style models cannot be measured directly, but

must be inferred from recordings of the current. This raises concerns about the model’s

identifiability, i.e., the possibility of finding the ‘true’ model parameters based on recordings

of I. In their analysis, Hodgkin and Huxley relied on the crucial assumption that the time

constant of m is much smaller than that of h, causing m to change much faster. The

difference in speed allows the start of a recording to be used to estimate the parameters for

m, while the end can be used to estimate the parameters of h. This is discussed further in

Chapter 5.

2.4.3 Markov models of ionic currents

When Hodgkin and Huxley created their model of currents and the AP, the mechanism by

which ions moved through the membrane was still unknown. Later, as the recognition of

ion channels grew, models emerged that attempted to describe changes in channel protein

conformation as a means of predicting currents. These became known as Markov models2.

IF IS1CI2CI3

C1 OC2C3

IS2

Figure 2.4: A Markov model structure for INa introduced by Clancy and Rudy (2002).

An example of a Markov model structure for the cardiac sodium current is shown in Fig. 2.4.

It defines 9 states, one of which is the open state (O). In addition, there are three closed

states (C3, C2, C1), two closed-inactivated states (CI3 and CI2), a ‘fast’ inactivated state

(IF) and two ‘slow’ inactivated states (IS1 and IS2). Like in the HH formalism, transitions

between states are governed by voltage-dependent chemical reaction rates. Using this model,

the sodium current through a cell membrane is modeled as:

INa = ḡNa ·O(Vm) · (Vm − ENa)

where O(Vm) is the proportion of channels in the open state.

This model shares similarities with the INa model introduced by Hodgkin and Huxley. To

activate, the model makes three jumps (C3→ C2→ C1→ O) after which inactivation can

set in (O → IF ). It is also possible for the model to be deactivated (m = 0) and inactivated

(h = 0) at the same time (CI3 and CI2). However, the Markov model structure allows

for the introduction of dependencies between state transitions: the inactivated states IS1

and IS2 can only be reached via the state IF. These states were introduced to represent an

2Readers familiar with statistical Markov chains should note that the models used in cell electrophysiology
use chemical reaction rates instead of transition probabilities, leading to slightly different mathematics.
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experimentally observed slow inactivation process, where channels that were kept at high

potentials for an extended period needed a long time to recover (Clancy and Rudy, 2002).

Markov models have long been investigated as a way to connect ion-channel characteristics

to measurable currents (Armstrong and Bezanilla, 1977). This has been succesfully used

to extrapolate from changes in single-channel function to clinically relevant changes in the

AP (Clancy and Rudy, 1999). Conversely, it can be used to learn about channel properties

(for example state-dependent effects of channel-blocking drugs) by inspecting differences in

measured currents (Clancy et al., 2007).

If a channel’s kinetics can be well described as discrete transitions between a limited number

of states, and if we can identify those states, write down equations and parametrize the

resulting model, then Markov models present a unique bridge between molecular-level effects

and whole-cell currents. However, like the problem of finding the number of gates and the

powers in HH-style models, the problem of determining the structure of a Markov model

is still unsolved, although good estimates can be made by combining different sources of

information (Armstrong, 2006). Similarly, the shape of the equations that describe the rate

constants is chosen freely by the modeler (but equations based on Eyring rate-theory have

also been used, see Irvine et al., 1999). Finally, simulations with Markov models are slower

than those using HH-style models, especially when tricks are used to reduce the run-time

(see Rush and Larsen, 1978, and Chapter 4). For a recent overview of the differences between

HH-style and Markov models, see Carbonell-Pascual et al. (2016).

2.4.4 Single-channel simulations

The discovery of ion channels allowed Hodgkin and Huxley’s ion current models to be in-

terpreted as descriptions of the current carried through the membrane by all channels of

a certain type. When the current through individual channels was measured in the 70s

(see Section 2.5) it confirmed earlier suspicions3 that they opened and closed stochastically,

with opening and closing probabilities dictated by the membrane potential. By selecting the

appropriate algorithm, Markov models can be used to simulate both the stochastic single-

channel currents (Gillespie, 1976) and the idealized aggregate current through large numbers

of channels.

Fig. 2.5 shows the stochastic opening and closing of cardiac sodium channels, simulated

with the model by Clancy and Rudy (2002) (using Myokit, see Chapter 3). According

to this model, channel openings are relatively rare events, even at potentials leading to

strong aggregate currents. As the number of channels increases, the probability of multiple

channels being open at the same time increases. For larger numbers of channels, the sum of

the stochastic openings increasingly resembles the idealized aggregate current.

3 In fact, good estimates of the number of channels and their individual conductances had already been
made using statistical models, see for example Hille (1970) or Katz and Miledi (1972).
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Figure 2.5: Stochastic sodium channel openings, simulated using the model by Clancy and Rudy (2002) for
a single voltage step from −120mV to −20mV. (Left) The total number of open channels, simulated in a
model with 1, 2, 4 or 8 channels. (Right) The fraction of open channels in a stochastic simulation with 250
channels (noisy line) and the idealized aggregate curve (smooth line).

2.5 Measuring currents and mutations

The first (indirect) recording of an AP occurred as early as 1868, when the German physiol-

ogist Julius Bernstein invented the “differential rheotome” and used it to measure impulse

propagation in frog nerve (Schuetze, 1983). He hypothesized that his findings could be ex-

plained if cells had an electrically isolating membrane, occasionally permeable to potassium

ions (Seyfarth, 2006). Direct recording of ionic currents became possible in 1947, when

George Marmont and Kenneth S. Cole realized that a feedback amplifier could be used to

control the membrane potential while simultaneously measuring transmembrane currents4.

In their early experiments they used the giant axon of the squid Loligo pealeii (now known as

Doryteuthis pealeii), an unusual cell type which had the advantage of being large enough to

allow the insertion of a metal electrode directly into the axon. This technique of controlling

the membrane potential with a feedback amplifier became known as voltage clamping (Cole,

1968; Huxley, 2002; Verkhratsky et al., 2006).

Later, voltage clamping was applied to other cell types by using glass micropipettes (with a

very sharp tip) to penetrate the cell membrane. Provided the pipette tip is small enough for

the membrane to survive the perforation, an electrical connection with the cell interior can

be made by filling the pipette with a buffered salt solution and inserting an electrode into

its wider end (Graham and Gerard, 1946). Combined with voltage-clamp, this technique

can be used to measure APs and transmembrane currents (see also Hodgkin, 1950) and in

1949 the first micropipette measurements of the cardiac AP were reported by Coraboeuf

and Weidmann (1949).

4 Guitar players might be interested to learn that, while the transistor had been developed in the very
same year, the first voltage-clamp amplifiers were in fact tube amplifiers.
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Na+

INaA B C

Figure 2.6: (A) A schematic overview of the whole-cell patch-clamp configuration. (B) Pipette attached
to a cell. Some suction is applied, causing the membrane to enter the pipette and form a tight seal. (C )
After applying another short burst of suction, the membrane ruptures but stays attached to the inside of
the pipette.

In 1976, Neher and Sakmann discovered they could use a pipette with a larger tip (a low-

resistance electrode) to electrically isolate a small patch of membrane, allowing the recording

of currents through a single channel (Neher and Sakmann, 1976). Different variations on this

concept appeared in the years following their discovery, which collectively became known as

patch clamping. A popular method, employed in Chapter 5, is the ‘whole-cell configuration’

which measures aggregate whole-cell currents instead of single-channel currents. In this set-

up, shown schematically in Fig. 2.6.A, a pipette is placed against the cell membrane (using

a microscope and a mechanical micro-manipulator on a stabilized table). Some suction

is then applied, causing a small patch of tissue to enter the pipette and form a tight seal

(Fig. 2.6.B). Once the seal has stabilized, a second short burst of suction (or ‘kiss’) is applied

that, if successful, ruptures the membrane but leaves it attached to the inside of the pipette,

allowing electrical access to the cell interior (Fig. 2.6.C).

The next big advance occurred when genes encoding ion-channel subunits were identified

and cloned. In 1984, Noda et al. were able to transcribe the DNA sequence for the sodium

channel of the electric eel Electrophorus electricus (Noda et al., 1984). Electric eels were the

ideal candidate as their electroplax (the electric organ used to shock prey with) contains a

very high density of sodium channels. Two years later they artificially inserted this DNA

into Xenopus oocytes (frog eggs), and managed to record currents from the ion channels

then expressed by these cells (Noda et al., 1986).

The technique of inserting cloned channel DNA into such an expression system was further

developed to allow the study of artificially mutated genes. This has had a great impact on

medicine, as it allows mutations in channel genes identified in a clinical setting to be recreated

and studied in the laboratory. In Chapter 5 we use measurements in cell-expression systems

to investigate the possibility of variability in the kinetics of INa. In Chapter 6 we analyze a

large number of patch-clamp experiments on mutated sodium channels in expression systems,

and attempt to predict how the mutations affect the ionic current.
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Figure 2.7: Simplified schematic of a model of the ventricular action potential (O’Hara et al., 2011). The
cell is split into the main myoplasm, the area near the t-tubules and two compartments relating to Ca2+

storage and release (the JSR and NSR, see text). Channels are shown in blue, pumps in red and exchangers
in green. Background currents are indicated as gray channels.

2.6 Modern AP models

In 1962, ten years after Hodgkin & Huxley’s model of the squid axon, the first computational

model of a cardiac cell was developed by Denis Noble (1962). This model described the AP

of cells from the Purkinje fibers. Like the HH model, it used just three currents (sodium,

potassium and leak) and made no predictions about ion concentrations in the cell. In 1977,

a model of the (mammalian) ventricular AP was introduced by Beeler and Reuter (1977),

which included a Ca2+ current and a method for tracking the internal Ca2+ concentration.

The model also split the potassium current into two distinct components. This trend of

tracking concentrations and adding or refining currents continued in the next decades, caus-

ing models to grow larger and ever more specific. ‘Mammalian’ models were replaced with

species-specific ones (dog, rabbit, mouse, human, etc.) and different models were created

for cells from the SA node, the atria, Purkinje fibers, the LV and RV, and even for cells

from the outer (epicardial) or inner (endocardial) layer of the LV. For a detailed overview,

see Noble et al. (2012).

Fig. 2.7 shows a schematic overview of a modern model of the ventricular epicardial AP

(O’Hara et al., 2011). It includes a fast sodium current (INa) and a three-part leak (or

background) current (INab + ICab + IKb). The potassium current has been split into four

different parts, each through a different channel type with its own distinctive characteristics.

In addition, a Ca2+ current (called ICaL) has been introduced, along with several pumps

and exchangers.

The cell interior is divided into several compartments, and the model tracks ionic concen-
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trations (particularly Ca2+) in each of these, as well as the diffusion between them. The

network and junctional sarcoplasmic reticulum (NSR and JSR) are structures inside the

cell that play a crucial role in Ca2+-induced Ca2+ release, a process whereby the entry of

a small amount of Ca2+ through the membrane triggers the release of large amounts of

Ca2+ from the sarcoplasmic reticulum (Bers, 2001). Ventricular myocytes are known to

have an extensive network of t-tubules; places where the membrane folds inwards to create

deep “invaginations” that bring the sarcoplasmic reticulum into close proximity with the

extracellular fluid (see Soeller and Cannell, 1999, for 3-dimensional images of the t-tubular

network). In the model shown here, the area near the t-tubules is modeled as distinct from

the bulk intracellular fluid (or myoplasm). These detailed channels, transporters and com-

partments are crucial in modeling the complex processes of excitation-contraction coupling

that lead to contraction of the muscle cell. An updated version of the cyclic interaction

between membrane potential, channel states and currents is shown in Fig. 2.2 (right).

The development of complex models such as these has led to the need for tools that simplify

model implementation, exchange, and comparison. In Chapter 3, Myokit is introduced as a

toolkit for development and rapid simulation of modern models of the AP. For a comparison

of the complexity of modern models, see Heijman (2012).

2.7 The human ventricular epicardial AP

One of the advantages of computational modeling is the ability to simulate and visualize the

complex interaction between model components. Fig. 2.8 shows how currents in the model

by O’Hara et al. (2011) act together to shape the human ventricular epicardial AP. For the

sake of simplicity, some of the smaller currents are omitted, and no details of the internal

currents and diffusion are shown. While model- and cell-specific, the main components for

this model are similar to those in many cardiac myocytes, and will be discussed below as a

general introduction to the different currents and their role in shaping the AP.

At the start of the simulation shown in Fig. 2.8, the cell is fully relaxed (not contracted) and

Vm is at a stable resting potential of around −88mV. After 30ms, a short pulse is applied

to the cell (i.e., a small inward current is injected). This raises the membrane potential just

enough for the sodium current INa to activate, triggering a significant rise in the membrane

potential. As the sodium current begins to inactivate, the increase in membrane potential

slows down, eventually leading to a peak of around 35mV. At this high potential, the

transient outward potassium current ITo activates and then rapidly inactivates, causing a

small notch in the AP that is characteristic for epicardial ventricular cells. The next currents

to activate are the L-type calcium current ICaL and the rapid delayed rectifier potassium

current IKr. These currents act in opposing directions, causing the membrane potential to

stay relatively stable for a period of about 200ms known as the plateau phase. During the
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Figure 2.8: (Left) Currents through the cell membrane, simulated with the model by (O’Hara et al., 2011).
For simplicity, some of the smaller currents are omitted. Note the wide variety of time-scales, shapes and
amplitudes. (Right) The resulting action potential (top) and Ca2+ transient (bottom).

plateau phase, IKr grows steadily, while ICaL begins to inactivate, eventually causing the

membrane potential to drop. At around -50mV, the inward rectifier potassium current IK1

becomes active and brings Vm back down to the resting potential.

Once the cell is back at its resting potential (once it has repolarized, in electrophysiology

lingo) the ion channel currents largely disappear. Instead, the membrane potential is de-

termined by the balance of the sodium-potassium pump current INaK, the sodium-calcium

exchange current INaCa and the sodium and calcium background currents, one of which

(ICab) is shown Fig. 2.8. The current IK1 is also active in this phase, but as it has a reversal

potential very close to the resting membrane potential, the current is typically small. How-

ever, if any minor deviations in Vm occur, they are immediately compensated by an increase

in IK1.

A final current visible in the figure is the slow delayed rectifier potassium current IKs. During

a normal AP, it has a very low amplitude, and can be blocked entirely without apparent

consequence. However, if an AP is prolonged excessively or if adrenaline is present (e.g.,

when something triggers the body’s ‘fight-or-flight’ response), IKs can grow to become a

dominant force in restoring the resting potential (Volders et al., 2003). This is an example

of redundancy in the cellular AP, an area where nature has introduced multiple mechanisms

that appear to have the same function but can in fact act as back-up systems for each other.

This is discussed further in Chapter 8.
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2.8 Models of coupled cells and tissue

Once an AP model has been defined, it can be extended into a model of cardiac tissue. To

create a model of two cells, the AP model’s equations are duplicated, leading to two Vm’s,

two sodium currents, two Ca2+ concentrations etc. A gap junction current is introduced to

couple both cells:

I1→2 = g12 · (V1 − V2)

I2→1 = g21 · (V2 − V1) = −I1→2

where I1→2 is the current from cell 1 to 2, I2→1 is the current from 2 to 1, V1 and V2 are

the membrane potentials of cell 1 and 2 and g12 = g21 is a fixed conductance indicating

the strength of the connection. I1→2 = −I2→1, indicating that this is a charge conserving

connection. The exchange of ions between cells associated with this current is not commonly

modeled. This scheme can be extended to any number of cells and allows arbitrarily complex

networks of connections.

Modeling each cell individually, however, is not a particularly fast way of modeling tissue.

This issue is solved in the monodomain model, which ignores the distinction between cells

and uses AP models to describe points in space, connected by a resistance dictated by a

continuous scalar field. Instead of the ordinary differential equations (ODEs) of single or

coupled cell models, this results in partial differential equations (PDEs). The computational

speed-up is achieved by solving the PDE on a grid with points spaced further apart than in-

dividual cell lengths (Leon and Horáček, 1991). The bidomain model is like the monodomain

model, but has the additional benefit of incorporating extracellular conduction, which can

be useful to model defibrillation (Keener and Sneyd, 2009). The relation between the mon-

odomain model and the coupled cell approach is discussed in the appendix to Chapter 3.

For a detailed guide to large-scale tissue modeling, see Clayton and Panfilov (2008).

2.9 Conduction velocity and reentry

In systems of coupled cells, APs can propagate from cell-to-cell, causing waves of excitation

to spread over the tissue. The speed at which they travel is called the conduction velocity

(CV) and is an important tissue-level parameter. The CV is determined by the characteris-

tics of the cardiac fast sodium current INa, the number of the gap junctions connecting the

cells, and the presence of any fibrotic (non-conductive) material between cells. The number

of gap junctions and the amount of fibrosis are both modeled by the cell-to-cell conductance

terms specified by the tissue model. The influence of INa is an example where the tissue-

level behavior depends on the properties of the individual cells. As a result, validating a cell

model, or even a current model, also requires inspecting tissue-level behavior.
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In normal cardiac conduction, waves propagate from one side of the ventricles (or atria) to

the other and then die out. But under certain conditions spiral waves can occur that rotate

around a fixed or moving locus, and can continue for extended periods of time (a detailed

overview is given in Kléber and Rudy, 2004). This phenomenon is known as reentry and

was described and analyzed as early as 1913 (Mines, 1913). Reentry severly disrupts the

pumping function of the heart, and occurs in some of the most serious forms of arrhythmia.

An example of a reentrant wave is shown in Chapter 3.

2.10 Bioelectricity on the body surface

The combined electrical action of all cardiomyocytes creates a signal strong enough to be

measured at the body surface, using electrodes placed on the skin. The resulting signal is

called the electrocardiogram or ECG and is one of the most important diagnostic tools in

clinical cardiology. In Chapter 7 we exploit the fundamental relationship between the cellular

AP and the ECG to improve the quality of heart-surface potential reconstructions based on

body-surface measurements. To do this, we use a heuristic method based on the coupled-cell

approach (see Section 2.8) to perform highly simplified ‘whole-heart’ simulations, which we

compare to fine-grained simulations performed using the monodomain model.
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2.11 A personal note

Occasionally, people have been surprised to hear of electricity as a central feature of the

heart, of the biological applications of mathematical theory, or of the intrusion of computer

scientists into the biomedical world (and vice versa!). This ‘crossing-borders’ aspect is one

of the things that makes computational cardiac electrophysiology rewarding and fun. At

the same time, its inter-disciplinary nature doesn’t always fit well with administrative or

educational systems (not to mention the difficulty of explaining your job at dinner parties).

Sometimes, whether due to nurture or nature, a certain cultural difference also seems to

exist between holders of engineering and biomedical degrees.

And yet a brief glance at history shows that the interplay between these fields can be very

fruitful indeed. For example, both Hodgkin and Huxley (see Chapter 2) had a strong back-

ground in physics; Huxley had even intended to graduate in this discipline before switching

to physiology. During the war, both were involved in the development and application of

radar (Nobel Media, 1963a,b). The papers that resulted in their 1963 “Nobel prize in physi-

ology or medicine” (shared with John Eccles) not only describe physiology experiments but

also provide the building plans for the electrical devices needed to perform them (Hodgkin

et al., 1952). A second Nobel prize for physiology or medicine was awarded to Neher and

Sakmann in 1991 for their invention of the single-channel recording technique. Again, this

work was highly technical in nature, and again the authors wrote in the accompanying bi-

ography about their love of biology and physics and the difficulty of choosing one over the

other when applying for university (Nobel Media, 1991a,b).

Leaving Nobel prizes aside, it is fascinating to see how quickly technological advance-

ments have influenced biology. Sticking with mid-twentieth century examples, the electronic

negative-feedback amplifier concept was developed in the 1930s (Kline, 1993), patented in

1937 (Black, 1937), and formed the electronic basis of the voltage-clamp in 1947 (Huxley,

2002; Cole, 1968). When Hodgkin and Huxley performed their simulations in 1952, they

used “a hand-operated calculating machine”, but by 1960 both Richard Fitzhugh and Denis

Noble had simulated APs on an analog (Fitzhugh) and a digital (Noble5) computer (Huxley,

2002; Fitzhugh, 1960; Noble, 1960). Before computational models were introduced, Balt-

hazar van der Pol and Jan van der Mark used a system of flashing Neon tubes to model

the normal heartbeat, sinoatrial block, and the impossibility of creating extra systoles by

stimulating during the heart’s refractory period. They published their findings with this

electronic model in 1928 (Van der Pol and Van der Mark, 1928).

There are multiple conclusions we can draw from these examples, but the few I’d like to

highlight are (1) there is a close and historical relationship between the mathematical sciences

and biology, cardiac electrobiology in particular, (2) becoming proficient in more than one

5In fact, Noble used one of only two such devices available in the United Kingdom at the time.
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subject should be encouraged at every level, and (3) investments in science can pay off in

unexpected ways. These points may be relevant to those in charge of university structure,

university curricula, and scientific funding.
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CHAPTER 3

Myokit: A simple interface to cardiac

cellular electrophysiology

This chapter is based on:

Michael Clerx, Pieter Collins, Enno de Lange and Paul G.A. Volders (2016). Myokit:

A simple interface to cardiac cellular electrophysiology. In Progress in Biophysics and

Molecular Biology. Volume 120, issues 1–3, pages 100–114.

Michael Clerx, Paul G.A. Volders and Pieter Collins (2014). Myokit: A Framework

for Computational Cellular Electrophysiology. Presented at Computing in Cardiol-

ogy, Boston 2014. Volume 41, pages 229–232.

Abstract

Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac

cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical

user interface, single and multi-cell simulation engines and a library of advanced analysis tools

accessible through a Python interface. Models can be loaded from Myokit’s native file format

or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and

OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this

chapter, we review existing tools to simulate the cardiac cellular action potential to find that

current tools do not cater specifically to model development and that there is a gap between

easy-to-use but limited software and powerful tools that require strong programming skills

from their users. We then describe Myokit’s capabilities, focusing on its model description

language, simulation engines and import/export facilities in detail. Using three examples, we

show how Myokit can be used for clinically relevant investigations, multi-model testing and

parameter estimation in Markov models, all with minimal programming effort from the user.

This way, Myokit bridges a gap between performance, versatility and user-friendliness.
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3.1 Introduction

Numerical models of the electrical processes in cardiac myocytes have been successfully used

to elucidate the mechanisms of action potential (AP) formation, electrical propagation from

cell to cell, and abnormal impulse formation and conduction in the heart (Noble et al.,

2012). These models provide a vital bridge between drug targets, for example ion channels

or receptors, and the dynamical factors leading to heart-rhythm disorders, such as patho-

logically altered conduction or repolarization (Weiss et al., 2015). The application of new

and refined experimental methods has led to an increased level of detail and specialization

in AP models, which may now include elements such as stretch-sensitive channels (Niederer

and Smith, 2007), ion-channel phosphorylation (O’Hara et al., 2011) or signaling pathways

(Heijman et al., 2011). Conversely, the growing awareness of the need to integrate models

on different scales combined with the increased availability of computing power has broad-

ened the scope for application of AP models considerably. As a result, AP models have

more users and more uses than ever before, but also a far greater mathematical complexity

and a greater reliance on the model builder’s correct interpretation of complex multi-modal

experimental data. Collaboration between experts from a wide range of disciplines is vital

to further refine models and experiments and therefore the knowledge we obtain from them

(Abriel et al., 2013).

Software tools can aid researchers using AP models in several ways. Firstly, the definition

of open and unambiguous formats for model description allows models to be exchanged, in-

spected, compared, improved and revised. Publishing a model in a widely recognized format

is an invitation for external feedback and can assist widespread adoption and recognition

of modeling results. Comparison can be automated, allowing models to be tested against

previous results from model or experiment each time a change is made. This way, models

can be continuously refined without the danger of losing past results.

Secondly, sharing software for simulation and analysis is a way of sharing effort and expertise

so that researchers may benefit directly from each other’s work. Of particular importance

in this respect, is the role of fiber and tissue simulations for the development of single-cell

models. Many of the properties that a single-cell model should capture only emerge when

cells are coupled, making such simulations a vital part of AP model development. However,

the programming effort required to set up these simulations may deter some modelers from

going down this route. By sharing software tools such barriers are taken away.

Finally, if tools are not just efficient but also easy to use then the time needed to set up

experiments is decreased while the number of people able to do so (or willing to learn)

is increased. This can aid collaboration by drawing more non-experts into computational

biology while giving experts time to step outside their disciplines.

So how far have these benefits been realized in current software tools? In the next sections we
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review existing software with a focus on the three goals of sharing models, sharing methods

and user friendliness. We discuss the usefulness of these tools for model development and

make two central observations: (1) Existing tools cater to AP-model use, more than to

model development. These two goals have different, sometimes directly opposite needs. (2)

There is a wide gap between easy-to-use simulation software with limited capabilities and

powerful simulation tools that require considerable effort and programming skill from the

user. Finally, we present Myokit, a tool for model development and analysis which aims to

fill this gap.

3.1.1 Tools for sharing models

The most widely used language for sharing models of the cardiac AP is CellML (Hedley

et al., 2001; Cuellar et al., 2003). While there are other exchange formats such as SBML

(Systems Biology Markup Language, see Hucka et al., 2003) in which AP models can be

formulated, CellML has broad support in the AP modeling community and a freely accessible

repository containing over 160 models of the cardiac AP (http://models.cellml.org). The

first specification (version 1.0) was finalized in 2001 and a second (version 1.1) was given

definitive status in 2002. An overview of tools capable of working with CellML is available

online (http://www.cellml.org/tools). The goal behind CellML is to facilitate universal

exchange and re-use of mathematical models, particularly models of the electrophysiological

and biochemical processes inside a cell.

A number of tools have been published to convert CellML to other languages, allowing

CellML models to be used with a variety of tools. The CellML advanced programming

interface (API) defines a number of ways to interact with a model, including translating it

to other languages (Miller et al., 2010). An implementation of the API is available on the

CellML website and can be used to translate CellML models to C, MATLAB and Python.

Another conversion tool is AGOS (Barbosa et al., 2006), which can create simulation code

for C++. It was modified by Amorim et al. (2010) to generate simulation code that can be

run on graphical processing units (GPUs), thereby facilitating fast multi-cell simulations.

PyCml (http://chaste.cs.ox.ac.uk/cellml) is a Python based utility that can be used

to read and stringently validate CellML files before creating C++ model definitions.

The CellML language is specified using XML (eXtensible Markup Language), a widely used

format for sharing documents over the internet. The choice for XML makes it easy for

developers of software tools to incorporate a CellML import into their programs, as software

libraries to work with XML documents are freely available for many different platforms.

A downside of XML is that, while it is human-readable as well as machine-readable, it

is not necessarily compact, nor easy to read or to write by hand. CellML equations in

particular are specified in a subset of MathML (Mathematical Markup Language), which

is unambiguous but highly verbose. In addition, good model definitions for archiving and
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exchange are written out with consistent units, are well annotated with information about

all the variables and define a rigid interface through which the model can interact with

other models. These features, which are undoubtedly good for exchange formats, can be a

hindrance to users wishing to rapidly experiment with different model formulations, making

CellML less suited to model development.

3.1.1.1 Combining models

A major benefit of having models publicly available in a shared format is that models can

be combined. For example, a model of the cardiomyocyte can be incorporated into an

integrative model of the cardiovascular system. This is one of the key ideas behind the

IUPS Human Physiome project, which seeks to connect the many specialized mathematical

models used in biology (Bassingthwaighte, 2000; Hunter, 2004). The need for such model

integration has driven the development of many of the tools discussed here.

A tool for combining models on the molecular level is Virtual Cell, also known as VCell

(Moraru et al., 2008). It can model electrophysiology, reaction kinetics, membrane transport

and diffusion processes to create a 3D model of a cell that can be related to experimentally

obtained images. On a larger scale, tools such as CHeart (http://cheart.co.uk), Continu-

ity (http://continuity.ucsd.edu) and OpenCMISS (Nickerson et al., 2015) can be used

to create combined models of electrophysiology, contraction and the resulting fluid dynamics

inside the heart.

A key idea in creating these combined, multi-scale models is that the resulting system is

modular, i.e., that any model of a subsystem (for example a model of the cardiac cellular

AP) can be replaced or updated without requiring changes to the other subsystem models.

This requires that the models, at least in part, adhere to some well-defined structure about

which there is a widespread consensus. Such fixed structures (called ontologies in software

terms) contrast sharply with the creative aspects of model development where variables, for

example currents, are continuously added, removed, split up and redefined. As a result, the

aim of integrating different levels of physiology is not always compatible with the aim of

accurately incorporating new experimental data.

3.1.1.2 Comparing model results

AP models represent theories on the electrophysiological functioning of the cell. As such, it

should always be possible to compare model results with experimental data or predictions

from competing models. A standard defining the Minimum Information for a Cardiac Elec-

trophysiology Experiment (MICEE) has been approved by a large consortium of cardiac

electrophysiologists (Quinn et al., 2011). Similarly, a standard defining the Minimum In-

formation About a Simulation Experiment (MIASE) has been created by Waltemath et al.

(2011a). SED-ML, the Simulation Experiment Description Markup Language, is a format
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for sharing simulation experiments designed to meet the requirements set out in MIASE. It

describes how a simulation should be designed and run in a manner that allows the results

to be replicated on different systems. At the time of writing this manuscript, the standard

does not yet meet the requirements needed to compare the output of different models or to

compare the output of arbitrary models to experimental data. Functional curation is a stan-

dard proposed by Cooper et al. (2011, 2015b) to describe experiments and post-processing

operations independently of a model. Such a standard can be of great use for systematic

model development. For example, by creating a series of tests that a model must pass

and regularly (re-)running them, a model builder can focus on highly specific subsystems

(for example the influence of an intracellular calcium concentration on a particular current)

without inadvertently changing other parts of the model. Comparing model output can also

be useful to identify differences in emergent model properties1 or to identify areas where

different models disagree, which can be promising targets for investigation. A freely acces-

sible on-line implementation of the functional curation standard was recently presented in

the form of the Cardiac Electrophysiology Web Lab (Cooper et al., 2015a).

3.1.2 Sharing methods

Common methods employed in cellular electrophysiological research and model development

include single-cell simulation, multi-cell simulation, large scale tissue- and whole-organ sim-

ulations as well as parameter estimation and sensitivity analysis. Tools for working with

AP models can be divided into tools that work from a graphical user interface (GUI) and

tools made available as programming libraries.

A good example of a GUI-based tool is OpenCOR (Garny and Hunter, 2015), a merger of

the older tools COR and OpenCell/PCEnv. It provides an interface through which CellML

models can be loaded, single-cell simulations are run and the results may be visualized.

OpenCOR has full CellML 1.1 support and support for SED-ML and Python scripting is

planned. Multi-cellular simulations are not supported.

CESE Plus 2.0 (Simulogic Inc., Halifax, NS, Canada) is a proprietary tool that provides

a graphical environment from which single-cell simulations can be run using a selection of

annotated cell models. Parameters can be modified and some graphical analysis tools are

provided.

JSim (Butterworth et al., 2013) is a Java-based tool for simulation and analysis of mathe-

matical models including various types of differential equations. It is mentioned here because

it can import and export CellML models and provides methods for parameter estimation

and sensitivity analysis. However, it does not cater specifically to models of the cardiac AP.

1Emergent properties are properties that are not explicitly encoded in a model but arise from the interplay
of various elements. An example in cardiac AP models is the action potential duration, which is not set by
the modeler but emerges as a result of the balance of depolarizing and repolarizing currents.
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CSim (http://code.google.com/p/cellml-simulator) is a stand-alone utility for running

single-cell simulations intended for use as a back-end to other more elaborate packages. As

such, it has no graphical front-end and does not provide any further modes of analysis.

DENIS (Castro et al., 2016) is a recently developed project that aims to build a large network

of volunteers whose computers can be used during “idle time” to perform electrophysiological

simulations. In its first implementation DENIS is focusing on single-cell models only, but

work is in progress to extend the project to include multi-cellular GPU simulations.

The C++ library Chaste (Mirams et al., 2013; Cooper et al., 2014) is the first tool dis-

cussed here that performs single and multi-cell simulations. Chaste uses models encoded in

C++ (optionally converted from CellML using PyCml) to run high-performance single-cell,

monodomain or bidomain simulations. Before running, many intermediate optimizations

are applied to reduce computation times. The first (and so far only) implementation of

functional curation is based on Chaste. A downside to Chaste is that it requires some pro-

gramming effort to use. For model development, users can modify either C++ or CellML

code.

Large scale tissue and organ simulations face additional problems that do not occur on the

cellular level, for example fiber orientation, mesh generation and the creation of patient-

specific heart geometries. These tools usually assume that the user is a skilled programmer

who uses the tool to set up complex simulations that need to be run on high-performance

distributed computing systems. Good examples are CARP (Vigmond et al., 2003), Continu-

ity and OpenCMISS. At this scale, detailed cellular electrophysiology is often sacrificed for

computational speed and the ability to investigate higher-level properties such as mechanical

stress and strain or fluid dynamics.

Finally, a number of tools exist that tackle the numerical complexity of whole-heart simu-

lations not by addressing state-of-the-art hardware and software, but by creating simplified

cell models that can be combined into a high-performance model of the whole heart. This

is an interesting and fruitful area of research, but as it concerns building specialized mod-

els rather than creating model-independent software tools, it lies outside the scope of this

review.

3.1.3 User-friendliness

A number of tools have been released to make working with AP models more user-friendly

and less time-consuming. OpenCOR contains a graphical interface for running single-cell

simulations, changing parameter values and annotating models. Equations can be changed

by editing CellML either directly or via a friendlier short-hand syntax using the recently

re-introduced “CellMLTextView”. Another friendly tool is CESE Plus 2.0, which uses an-

notated models that hide the equations from the user completely. CESE’s interface can
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be used to run single-cell simulations and change model parameters, but model equations

are fixed. JSim features a GUI and uses its own “Mathematical Modeling Language” to

represent model equations but has no specific focus on modeling the AP, which means users

will need to implement their own methods using JSim’s mathematical tools.

Other tools for working with CellML models are available, such as CellMLGUIgo (http:

//www.cellml.org/tools), which provides a minimalistic graphical representation of the

components in a CellML model and allows raw MathML to be modified. CellMLViewer

(Wimalaratne et al., 2009) can visualize the structure, but not the equations of a model

in CellML. Finally, educational tools such as eSolv (http://www.esolv.nl) provide an

intentionally limited set of simulation options that let students use modeling to explore the

current understanding of the cardiac AP.

3.1.4 Tools used in model development

From the review above, it becomes clear that none of the tools discussed are targeted specif-

ically at AP-model development and that tools for simulation of the cardiac AP are either

user-friendly and simple, allowing only single-cell experiments, or very powerful but more

difficult to use. We investigated the tools used by model developers by conducting a review

of the AP models listed in the recent overview provided by Noble et al. (2012). Models from

this overview were only included in our analysis if they were published in 2002 or later, i.e.,

after the first CellML version was finalized. In this subset of 60 models, we found most

developers favored a custom implementation using either MATLAB, C, C++ or Fortran.

The full table is given in Section 3.A.

The choice for these languages is not surprising: C and Fortran stand out as programming

languages due to the availability of established, well-tested, numerical tools. In particular,

the Fortran library LSODE (Hindmarsh, 1983) and the later C version CVODE (Hindmarsh

et al., 2005) have been used by several groups. Any C routine can also be run in C++

which has additional advantages when creating complex programs or using libraries written

specifically for C++. MATLAB provides wrappers around many C and Fortran routines,

making them easier to use from a graphical environment, and also provides visualization and

scripting options as well as thorough documentation. However, such custom implementations

do not benefit from the previous work by other researchers and require the user to fully

understand both the model and the programming techniques required to best implement

and solve them. Most importantly, this situation makes it more difficult for researchers

to compare models and reproduce results without requiring model translation, which is an

error-prone process.
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Figure 3.1: A schematic overview of Myokit’s main functionality. Models are created, transcribed from
literature or loaded from a database and written in a compact, easy-to-read syntax. The experiment to be
performed is specified in a script which accesses the various tools provided through Myokit’s Python interface.
Behind the scenes the framework makes use of existing external libraries to provide high performance. The
results can be processed directly or stored for later analysis. Export of model files is provided to allow
interaction with existing software.

3.1.5 Myokit

In this chapter we present Myokit, a tool specifically created for AP model simulation,

analysis, and development that bridges the gap between hard-to-use powerful libraries and

user-friendly but limited simulation tools. Myokit uses an easy-to-read model definition lan-

guage that allows users to interact directly with model equations without the drawbacks of

working in a low-level programming language or an XML-based annotated exchange format.

Simple simulations can be run directly from a graphical user interface while advanced exper-

iments are easily set up using the popular scripting language Python. High performance is

guaranteed by using on-the-fly compilation of generated C code, allowing Myokit to exploit

CVODE for single-cell simulations and use OpenCL for parallelized multi-cell simulations.

Tools for reading and writing of electrophysiology experimental data formats are included

along with routines for parameter estimation. Myokit can be integrated with NumPy/SciPy

(Jones et al., 2001) to create a powerful scientific computing environment similar to MAT-

LAB or Octave. Models can be manipulated directly from the Python interface so that

experiments can be fully automated or written in a model-independent fashion. Finally,

CellML import and export is provided, as is import from SBML and ChannelML, and ex-

port to C, MATLAB and others. Myokit’s main components are illustrated schematically

in Fig. 7.1 and described in detail in the remainder of this chapter.
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3.2 Functionality

We now describe Myokit’s main features, including its model definition language, simulation

engines and import/export facilities. A short description of Myokit’s implementation is also

provided.

3.2.1 Models of the cardiac cellular AP

Models of myocyte electrophysiology are commonly formulated as systems of ordinary dif-

ferential equations (ODEs) that provide formal, testable hypotheses about the cellular pro-

cesses that interact to form the cardiac AP. Examples of action potentials generated from

six cell models are shown in Fig. 3.2. A general mathematical form of a model describing

the cardiac single-cell AP is

dV

dt
= − 1

C

(
Iion(V, u, p) + Istim

)
(3.1)

du

dt
= f(V, u, p) (3.2)

Here, V is the transmembrane potential, C is the membrane capacitance and t represents

time. The vector u holds the time variant quantities describing the current state of the cell,

which typically consists of intracellular ion concentrations and variables describing channel

configurations such as activation, inactivation or Markov model states. Model parameters,

for example fixed concentrations or myocyte dimensions are contained in the vector p. The

change in membrane potential dV/dt depends on the sum of currents passing through the cell

membrane. Currents due to an external stimulus, commonly applied to excite the cell, are

represented by Istim. The sum of the remaining transmembrane currents (sodium currents,

calcium currents, the sodium-potassium pump current etc.) is written as Iion. The size

of these currents depends on V , on the ion concentrations and channel states contained in

the vector u and on the parameters p. All transmembrane currents are defined using the

common convention that a positive current has the net effect of carrying positive charge out

of the cell. The time dependent behavior of the variables in u is specified by the function

f(V, u, p). The exact definition of f is what makes a cell model unique.

3.2.1.1 Multi-cell and tissue simulations

To set up multi-cellular simulations, the equations for a single cell are duplicated and the cells

are coupled by introducing a diffusion current. Each cell i in the system is then described

by

dVi
dt

= − 1

C

(
Iion,i(Vi, ui, pi) + Istim,i + Idiff,i

)
(3.3)

dui
dt

= f(Vi, ui, pi) (3.4)
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Figure 3.2: Action potentials generated from various models using Myokit. (A) Purkinje fiber, Noble
(1962) (B) Mammalian ventricular myocardial fiber, Beeler and Reuter (1977) (C ) Human atrial myocyte,
Courtemanche et al. (1998) (D) Rabbit sino-atrial node cell, Demir et al. (1999) (E) Human ventricular
myocyte, O’Hara et al. (2011) (F ) Canine epicardial myocyte, Heijman et al. (2011)

Currents passing between connected cells i and j are assumed to follow Ohm’s law, so that

Idiff,ij = gij(Vi − Vj) (3.5)

where gij is the conductance of the connection between the two cells and Idiff,ij is the current

flowing from cell i to j. The total current Idiff,i for each cell i is then given by

Idiff,i =
∑
j

gij(Vi − Vj) (3.6)

Note that this formulation allows for arbitrary connections between the cells, allowing com-

plex geometries to be captured in this form. In the equations above, the parameter values

pi may be varied from cell to cell to introduce tissue heterogeneities. The constants gij can

be varied spatially to model heterogenous conduction, or they may be replaced by variable

conductances to incorporate detailed models of gap junction behavior. In a further extension

on this scheme, we can allow the function f and the size and meaning of the vector u to

vary from cell to cell. This allows simulations with multiple models to fit in this scheme, for

example to investigate AP propagation at the Purkinje-ventricular junction. Under certain

conditions, solutions to the monodomain model can also be made to fit this form (see Section

3.B).

3.2.2 Models in Myokit

A model in Myokit is simply a set of equations, where each equation uniquely defines a

variable. Models are divided into components, which indicate a functional or conceptual

relationship among a group of variables. For example, a component may hold all variables

relating to the fast sodium current or calcium dynamics. Variables, in turn, can have child

variables visible only to themselves. This allows long equations to be split into parts and

facilitates the re-use of common variable names such as alpha or beta. Myokit uses a
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declarative rather than a procedural language: details such as variable types and the order

in which to evaluate the equations are not specified by the user but determined automatically

by the software. As such, users specify the model to be solved, not the procedure by which

to do this.

Models, components and variables can have plain text meta-data properties associated with

them. For example, a model can define a property “description” with information about

the model’s origins. Units can be added to variables and numbers appearing in equations.

Methods are provided to check for unit consistency, but this is not required for simulation.

A model’s variables can be annotated using a system of labels (for output) and bindings (for

input). A Myokit model is self-contained: every variable that the model uses must be con-

tained within the model itself. However, a variable may define a binding to an external value.

Simulation engines that recognize this binding can then replace the variable’s equation with

the provided value. For example, multi-cell simulations use the binding diffusion current

to identify the model variable representing Idiff and use it to insert the calculated current.

Variables that may be needed outside of the model are indicated with labels. For example, the

label membrane potential is used to indicate the model variable representing V . Multi-cell

simulations read this variable’s value and use it to calculate the diffusion currents between

connected cells.

3.2.3 File format

Experiments in Myokit are defined in three parts: a model, a stimulus or voltage clamp

protocol and a script. This is reflected in Myokit’s file format, which can contain a model,

a protocol and a script section. Each of the sections is optional, so that it is possible

to have a file with a reference version of a model and several other files containing only

scripts that load this model and use it in an experiment. Alternatively, a file containing

all three sections is a compact and full description of an experiment which can be archived

or shared with students and colleagues. Even for reference implementations of models it

is often useful to include a short demonstration in the experiment section so that users

downloading the model can immediately see it in action. Myokit files use the extension

.mmt and are written in plain-text. Using plain text files has a number of advantages: (1)

users can open them in any editor, (2) models and experiments can be emailed without

security warnings, and (3) versioning systems (such as Git or Subversion) can track changes

and efficiently store plain text files. The syntax used in each section is briefly discussed

below. The full technical specification of the file format is found in the online documentation

(http://docs.myokit.org). Examples of a (partial) model, protocol and script are given

in Fig. 3.3, and a full model is given in Section 3.C.
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[ina]
use membrane.V as V
gNa = 4 [mS/cmˆ2]
ENa = 50 [mV]
INa = gNa * mˆ3 * h * (V - ENa)
    in [uA/cm^2]
    desc: The fast sodium current
dot(m) = alpha * (1 - m) - beta * m
    alpha = (V + 47) / (1 - exp(-0.1 * (V + 47)))
    beta = 40 * exp(-0.056 * (V + 72))
dot(h) = alpha * (1 - h) - beta * h
    alpha = 0.126 * exp(-0.25 * (V + 77))
    beta = 1.7 / (1 + exp(-0.082 * (V + 22.5)))
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import myokit
# Get the embedded model
# and protocol
m = get_model()
p = get_protocol()
# Create a simulation
s = myokit.Simulation(m, p)
# Simulate 1000ms
d = s.run(1000)
# Use maplotlib to visualize the results
import matplotlib.pyplot as pl
pl.figure()
pl.plot(d['engine.time'], d['membrane.V'])
pl.show()
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# Level  Start    Length   Period   Multiplier
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Figure 3.3: (A) An example of a fast sodium current component in Myokit. The inset shows the resulting
current during a normal AP. (B) A pacing protocol specifying a 0.5ms pulse every 1000ms, with the first
pulse occurring at t=100ms. (C ) A basic Python script using Myokit and the resulting simulated membrane
potential.

3.2.3.1 Model syntax

Myokit models are written in a clear and unambiguous syntax. An example of a component

representing the sodium current is given in Fig. 3.3.A. The component is defined by writing

its name enclosed in square brackets. Directly below this header, variables and component-

level meta-data can be added. The component declares two constants, an intermediary

variable INa and the states m and h, which are defined through their time derivative indicated

using the dot() operator. Nested variables, units and variable meta-data are indicated by

writing them below the parent variable on an indented line. For example, the current variable

INa has a meta-data property “desc” which provides a description of the variable’s meaning.

A unit for INa is declared using the in keyword. The variable ENa does not have a variable

associated with it directly, but one can be derived from its defining equation. Variables from

other components can be used by specifying their component name, for example x = 5 +

membrane.V. In this example an alias is defined for membrane.V, allowing the usage of the

shorthand V. An example of a full model specification is given in Section 3.C, and further

examples are provided in the supplementary materials. The full, technical specification of

Myokit’s model language, and many more models and examples can be found online at

http://myokit.org.
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3.2.3.2 Protocols

Protocols in Myokit are used to create the signals used to periodically stimulate or voltage

clamp a model. An example of a simple periodic pacing protocol is shown in Fig. 3.3.B.

A protocol contains one or more events, where each event has a specified starting point,

duration, and amplitude. Events can be set to repeat indefinitely with a certain period or to

occur a fixed number of times. This allows the various pacing protocols commonly used in

AP-model experiments to be implemented, as well the step protocols needed to voltage clamp

a cell. Having the protocol separated from the model has two main advantages. Firstly, it

allows models and protocols to be easily exchanged: a model can be run with multiple

protocols and the same protocol can be applied to many different models. Secondly, having

a separate protocol specification makes it easier for simulation engines to deal with the

discontinuities created by the protocol. Models of cells displaying automaticity can be used

without a protocol.

3.2.3.3 Scripts

The script section of a Myokit file is used to store a short Python program to set up and

run an experiment. This script can access the model and protocol stored in the same file,

but may also load models and protocols from external files. Scripts have access to Myokit’s

full range of capabilities through a Python API. In addition, scripts can import any number

of existing Python modules, such as the popular NumPy/SciPy stack which provides a

wealth of tools for numerical analysis and the Matplotlib library (Hunter, 2007) for data

visualization. The result is a powerful open-source modeling environment which is a viable

alternative to proprietary frameworks such as MATLAB and is specifically tailored to the

needs of cardiac cellular electrophysiology.

An example of a simple script running a single-cell simulation is shown in Fig. 3.3.C. First,

the Myokit module is loaded (line 1). Next, the model and protocol are read from the other

sections of the file (lines 4 and 5). These are then used to create a simulation engine (line

7) whose run() method is called to perform a 1000ms simulation (line 9). The results are

returned to the user as a dictionary containing the logged data for all variables. The example

finishes by loading a visualization library (line 11) and using it to create a plot of the results

(lines 12-14).

Models can be edited by modifying the model code directly, but also programmatically

from the experiment script. For example, in Fig. 3.3.C, after loading the model (line 4) a

change could be made to the model before passing it to the simulation (line 7). This way

the simulation would be run with a modified version of the model contained in the file.

Programmatically modifying models allows experiments to be automated, for example to

explore or optimize a set of parameter values.
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3.2.4 Import and export

Models can be imported from the exchange formats CellML, SBML (Hucka et al., 2003)

and ChannelML (Gleeson et al., 2010). Model import from CellML gives users access to

nearly 200 cardiac AP models listed in the CellML model repository and allows modelers

to find the model that’s best suited to a particular experiment, or to test their hypotheses

in a multitude of models. Myokit model definitions can be exported to several formats

including CellML, MathML, C, C++, MATLAB/Octave, CUDA and OpenCL for analysis.

For presentation purposes, equations can be exported to LaTeX or MathML, allowing PDF

and HTML documents to be created. Model equations can be imported from and exported

to the computer algebra system SymPy (Joyner et al., 2012), allowing advanced symbolic

manipulation. Data from patch-clamp recordings can be read from ABF, ATF, WCP and

CSV formats. Simulated waveforms can be exported to protocol files usable with Axon

software or WinWCP (Strathclyde Electrophysiology Software).

3.2.5 Single and multi-cell simulation

Myokit’s single-cell simulation engine uses the implicit adaptive multi-step solver CVODE.

This solver provides excellent performance on stiff systems of differential equations which

arise naturally in cellular electrophysiology (see Cooper et al., 2014, and Chapter 4). The

solver can be stopped or restarted at any time, allowing simulation results to be saved to

disk so that the simulation can be restarted later. Threshold-crossing detection is provided

which can be used to accurately measure action potential durations.

A versatile parallelized forward-Euler solver similar to Sato et al. (2009) is implemented in

Myokit for multi-cellular simulations. This engine uses OpenCL (Stone et al., 2010) to simu-

late large numbers of cells in parallel on multi-core CPUs (Central Processing Units), GPUs

or FPGAs (Field-Programmable Gate Arrays). By default, it is set up for rectangular grids

of homogeneous cells, coupled with a uniform conductance gx for 1-dimensional simulations,

and an additional conductance gy for simulations in 2-d. However, users can also specify the

individual connections between cells, allowing heterogenous conduction properties and more

complex geometries to be used. Further heterogeneity of tissue properties can be introduced

by varying model parameters from cell to cell. Additionally, by disabling cell-to-cell conduc-

tion, users can exploit the engine’s parallelization to perform a large number of single-cell

simulations with different parameters. Finally, under certain conditions the engine can be

used to find solutions to the monodomain model (see Section 3.B). For users who do not

wish to install an OpenCL driver, a simpler one-dimensional forward-Euler solver for single

core CPU is supplied.
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3.2.6 Advanced simulation and analysis

In addition to fast single and multi-cell simulations Myokit provides a number of specialized

tools for advanced analysis and simulation. A method based on automatic differentiation

(Griewank and Corliss, 1991) is included that can numerically approximate an AP model’s

Jacobian matrix for any point reached during a simulation. This can be used to evaluate

the system’s stability (i.e., the robustness of the AP against small perturbations) which can

be relevant when investigating phenomena such as early afterdepolarizations.

A specialized simulation engine is provided that combines automatic differentiation with a

simple forward-Euler scheme to calculate partial derivatives of model variables with respect

to model parameters. In Section 3.3.1 this is used to show how the membrane potential’s

sensitivity to a particular current changes over time. A different use is illustrated in Clerx

et al. (2015), where this capability is used to investigate parameter identifiability using the

method described by Fink and Noble (2009).

In a second simulation engine, automatic differentiation is employed to calculate the deriva-

tive of the state with respect to the initial conditions. This can be useful when investigating

periodicity, for example to evaluate the stability of a periodic orbit or as part of a scheme

to find such orbits. However, the practical feasibility of applying these methods to complex

AP models has not yet been fully explored.

Finally, a method is provided to perform fast simulations of currents described by Markov

models during voltage step protocols. In this method, Myokit’s SymPy import/export is

utilized to check if a user-supplied set of model states can be rewritten as a linear system of

differential equations for a fixed membrane potential. If this condition is met, the currents

elicited during a piecewise-linear voltage-step protocol can be calculated using eigenvalue

decomposition. The performance boost this provides compared to ODE-integrating methods

is particularly useful in the context of parameter estimation, which may require thousands

of such simulations.

3.2.7 Fitting patch clamp data

Import facilities are provided for patch-clamp data in the formats used by Axon and Strath-

clyde Electrophysiology software. The data is made available to the user in the same format

as simulation data, allowing direct comparison of the two. Users can then define an error

function to be minimized (see also Section 8.2.1.1). To this end, two global heuristic-based

derivative-free optimization methods are provided: particle search optimization and a ge-

netic search algorithm. Both methods have been shown to perform well for global estimation

of ion-channel model parameters (Wilhelms, 2013). Solutions can be further refined using

the local derivative-free optimization methods provided by SciPy. Parameter estimation

in Markov models can be sped up using Myokit’s fast Markov model simulations for step
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protocols. Finally, parameter sensitivity analysis can be used to test if a given protocol is

able to uniquely identify all parameters in a model. This can be used as a tool for model

development and protocol design.

3.2.8 Graphical user interfaces

An integrated development environment (IDE) is provided to edit mmt files and run simu-

lations, as shown in Fig. 3.4. It displays the model, protocol and script sections of an mmt

file on different tabs and contains several functions to visualize the structure of the model.

Equations can be visualized by selecting them with the cursor and using the “graph vari-

able” option. Single-cell simulations can be run without scripting by using the “Explorer”.

This opens up a separate window that lets users run simulations and inspect the results.

Parameters can be changed in the model code in-between explorer simulations, allowing the

results to be compared. A GUI for visualizing one- and two-dimensional simulation results

is also included.

3.2.9 Implementation

Myokit is written in Python, a language that was originally designed for educational purposes

and which has an easy-to-read, uncomplicated syntax. For high-performance tasks such

as simulations, Myokit automatically generates and compiles code in C or C++. This

allows simulations to run at the speed normally associated with low-level languages without

requiring low-level programming from the user.

All GUI components are based on the PyQt library (http://www.riverbankcomputing.

co.uk). These modules are built as extensions to Myokit, and are explicitly not part of

its core. This ensures that Myokit can safely be used with other GUI toolkits, in stand-

alone Python scripts, or within scientific environments such as Spyder (http://github.

com/spyder-ide/spyder). Similarly, while some of Myokit’s methods are designed to work

with the Python graphing package Matplotlib, none of the core functions rely on it so that

Myokit can be safely used with alternative packages.

Myokit requires a C99 compatible compiler such as GCC, which is commonly found on any

Unix-based system (including Linux and OS X). Users of Microsoft Windows may need to

install a GCC based version of Python. The Myokit website contains detailed instructions

on how to install and uninstall Myokit.

Myokit is open-source and licensed under the GNU General Public License (GPL). It runs on

Linux, Windows and OS X. Source code, example files, full documentation and a Windows

installer can be downloaded from the Myokit website (http://myokit.org).
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Figure 3.4: The Myokit IDE, open on the model definition tab. Using the IDE, users can edit the model,
protocol and script sections of mmt files and run simulations using the Explorer or the script.
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3.3 Usage

We now provide a few examples of how Myokit can be used in AP modeling practice. The

mmt files for all examples presented here are included as supplementary materials to the

published paper (Clerx et al., 2016) and can be run or modified in the Myokit IDE. To run

the multi-cellular simulations in the first example an OpenCL driver must be installed. The

parameter estimation example requires SciPy and SymPy to be installed; these are included

by default in many Python distributions.

3.3.1 A multi-scale experiment

In this first example we demonstrate the power of Myokit to run multi-cellular simulations

of clinically relevant situations. While the results shown here are not novel per se, we use

them to illustrate how such simulations can be set up in Myokit with only a few lines of

scripting code, thereby paving the way for further analysis.

Transmural differences of the right-ventricular myocardium have been linked to Brugada

syndrome and VT/VF (Yan and Antzelevitch, 1999). In particular, changes to the balance

between fast sodium current INa, transient outward current ITo and L-type calcium current

ICaL may lead to alternating loss of dome in epicardial cells, which can trigger a reentrant

wave originating from the epicardium (Yan and Antzelevitch, 1999; Dumaine et al., 1999;

Nademanee et al., 2011). We now demonstrate how Myokit can be used to investigate the

mechanism underlying this phenotype on the cell, fiber and tissue level.

We selected the model of the human ventricular AP by ten Tusscher and Panfilov (2006), or

TTP-2006, as it incorporates transmural differences in ion currents and has been shown to

recreate both physiological and pathological propagation. The model was downloaded from

the CellML repository and imported into Myokit. After importing the hard-coded stimulus

current was replaced by a stimulus using Myokit’s pacing mechanism and the three models;

epicardial, endocardial, and midmyocardial were merged into a single file with a cell-type

switch (see example-ttp-1-model.mmt and example-ttp-2-transmural-differences.mmt).

An epicardial AP generated by Myokit from TTP-2006 is shown in Fig. 3.5.A. To recreate

the observed pathological behavior, we changed the balance between inward and outward

currents in the early phase of the AP by modifying the ITo conductance parameter gTo. APs

generated for increasing values of gTo are plotted in Fig. 3.5.B: the notch is seen to gradually

deepen, eventually leading to a complete loss of dome (see example-ttp-3-gto.mmt). Further

analysis of the influence of gTo on the model AP is presented in Fig. 3.5.C. Here, the top

panel shows the current itself while the lower panel displays the derivative of the membrane

potential with respect to the conductance gTo. This illustrates the size of the effect small

changes in gTo will have on the AP at different points in time. This quantity, though not

easy to verify experimentally, can be highly illustrative of model behavior: it shows clearly
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Figure 3.5: (A) The baseline epicardial AP generated from TTP-2006. (B) Effect of increasing gTo on the
notch in the AP. The original unchanged AP is shown as the thick line at the top, successive increments
push it to more negative potentials, eventually leading to a complete lack of dome (bottom line). (C ) ITo

current density and sensitivity of the AP to small changes in gTo. Slight changes in gTo affect the early and
late stages of the AP, long after the current itself has inactivated.

that the current’s effects last much longer than the current itself as it influences both notch

depth and action potential duration (see example-ttp-4-sensitivity.mmt).

We then set up a multi-cellular simulation to study transmural propagation. Following

Bébarová et al. (2008) we used a fiber consisting of 60 endocardial, 45 mid-myocardial

and 60 epicardial cells with a stimulus applied at the endocardial end. The cell-to-cell

conductance was set to match a transmural conduction velocity of approximately 50 cm/s

(Taggart et al., 2000). The APs from cells in different parts of the fiber are shown in

Fig. 3.6.A. Under baseline conditions the traces are almost indistinguishable: a slight delay

between the activation of the endocardial and epicardial cells can be seen, and APs from

mid-myocardial and epicardial cells display a slight notch. The strong coupling between the

cells creates an almost homogeneous action potential duration throughout the strand, so

that midmyocardial cells no longer display a prolonged AP. A pathological case was created

by reducing cell-to-cell conductance, decreasing gCaL to 50% (Antzelevitch et al., 2007),

increasing epicardial and midmyocardial gTo to 250% and adding a shift in ITo voltage

dependence. With these modifications the epicardial cells alternate between a delayed dome
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Figure 3.6: (A) Baseline action potentials from different cells in a transmural fiber simulation are almost
indistinguishable. (B) APs from cells in a transmural strand with increased gTo and reduced gCaL. Selected
cells between cell 80 and 155 are shown in gray to illustrate transmural development of loss-of-dome.
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Figure 3.7: (left) Reentrant wave in a transmural plane of 400x165 cells. A stimulus is applied endocardially
and seen to travel towards the epicardium. Heterogeneous gCaL causes conduction block in all but the left-
most epicardial cells. The epicardial cells that do depolarize then cause a wave that propagates through the
epicardium before reentering the repolarized endocardium, triggering a spiral wave. (right) Calcium-driven
conductance from a delayed-dome cell to a loss-of-dome cell initiates an ectopic AP in the tissue simulation.
The location of the cells is indicated by 1 and 2 in the top-right panel (270 ms).

and complete loss of dome. A loss-of-dome beat is shown in Fig. 3.6.B (see example-ttp-6-

transmural-modified.mmt)

To see how transmural loss of dome can lead to reentry, the fiber experiment was extended to

a simulation of a transmural plane measuring 400 by 165 cells. Again, ITo was increased (this

time only in the epicardial cells) and the conduction speed was lowered. ICaL conductance

gCaL was set to 75% for the left 10% of cells and to 30% for the remainder. Under these

conditions, a severely delayed dome in the left 10% can trigger a new depolarization in a

neighboring loss-of-dome cell. The resulting reentrant wave is visualized in Fig. 3.7 and a

video is included in the supplement.

3.3.2 Multi-model testing

In the previous example, changes to models were made directly in the mmt model definition.

In this example, which is included in the supplementary materials as example-multi-model-

testing.mmt, we show how to run experiments whilst only making changes from the script.

This can be of great practical use when comparing models or during incremental model

development. Twelve mmt files are used, each containing either a human or canine model

or a model variant for a specific cell type. The example script loads each of these models,

creates an appropriate protocol (1000ms cycle length) and runs a simulation. The model

files are annotated with labels for the membrane potential and the L-type calcium current,

allowing the script to identify these variables and modify them. The membrane potential

variable is tracked by the simulation to calculate an action potential duration (APD). Next,

the defining equation for the L-type calcium current is modified to be 50% of its original

value. A second simulation is then run with this updated model and the APD is measured

again. The resulting APD differences are plotted in Fig. 3.8. While the human models agree

an APD shortening should occur, there is no consensus about the degree of shortening or the

transmural differences. The canine models are divided about the direction of the change,

but generally favor a smaller change than the human models.
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Figure 3.8: Action-potential duration prolongation (positive) or shortening (negative) due to blocking of the
L-type calcium current, tested in several models. The top six results are in the canine ventricular models
of Benson et al. (2008), Davies et al. (2012), Decker et al. (2009) and Heijman et al. (2011). The lower
six results are from the human ventricular models published by O’Hara et al. (2011) and ten Tusscher and
Panfilov (2006). Results are included for epicardial (epi), mid-myocardial (mid) and endocardial (endo)
cells.

3.3.3 Parameter estimation

As a final example, we show how Myokit can be used for parameter estimation in Markov

models, a common step in model development. Two examples are provided: The first, given

in the supplementary material as example-parameter-estimation.mmt, uses simulated data

while the second, given as example-parameter-estimation-2.mmt, uses currents obtained from

a patch-clamp experiment.

In both examples, a cell model is loaded and the variable representing membrane potential is

identified. The membrane potential is clamped to V = −140mV and the model is simulated

for 30 seconds to let the sodium channels move into a steady state. Next, a number of

parameters of the Markov model for INa are selected and Myokit’s MarkovModel class is used

to extract a parametrizable, linear Markov model from the cell model. A set of reference

currents is then obtained, either through simulation or by loading and pre-processing a

patch-clamp data file. The experimentally obtained currents are shown in Fig. 3.9.A.

Next, a score function is defined that takes a set of parameter values as input, calculates the

resulting currents and returns the sum of squares difference with the reference currents. A

wide set of boundaries is defined for all parameters and a global search for the smallest error is

run starting from random positions within these bounds. Using particle search optimization

a set of parameters providing a good fit is found. This solution is then refined using a
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Figure 3.9: Sodium currents elicited by a voltage step protocol. (A) Experimentally obtained currents in a
Chinese hamster ovary cell stably transfected with SCN5A. (B) Currents calculated with the values found
by the parameter estimation method.

local search method, in this case the Nelder-Mead simplex algorithm provided by SciPy.

Simulated currents from the model fit to the experimental data are shown in Fig. 3.9.B.

3.4 Discussion

The strengths and weaknesses of any well-implemented software tool are due in large part

to the priorities set by its authors. Myokit aims to be a tool not just for simulation and

analysis, but also for model development. This may include the creation of a whole new

model but more often means fitting models to new data, adding new components or refin-

ing existing ones. It frequently includes changing equations in deeper ways than changing

parameter values and so an easy-to-work-with modeling language is required. To explore

the results of altering the model equations Myokit supports fast single-cell simulation. It is

highly scriptable to allow systematic investigation of model properties. Because multi-cell

phenomena emerge from single-cell models and are a crucial tool for model validation, sup-

port is included for fast parallelized multi-cellular simulations. In this section we discuss

Myokit’s strong points, discuss its (intentional and unintentional) limitations and describe

directions for future development.

3.4.1 Dynamical systems

Myokit provides support for first order ODEs. Higher order ODEs can be included by

rewriting them as systems of first order ODEs: for example ẍ = f(x) can be rewritten as ẋ =

y with ẏ = f(x). No general support for partial differential equations (PDEs) is provided,

but Myokit can be used to solve the most common PDE in cardiac electrophysiology, the

monodomain equations, albeit only on a rectangular grid (see Section 3.B). Support for

differential algebraic equations (DAEs) is not included as these are not very common in
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cardiac AP models. Stochastic ODEs can be useful to model phenomena such as stochastic

channel openings or calcium sparks. Support for this may be added in future versions of

Myokit.

3.4.2 Multi-cell modeling

Myokit’s focus is on single-cell simulations and systems of coupled cells. Bidomain models

and whole-heart simulations lie outside of its intended scope. Nevertheless, the OpenCL

based simulation method included in Myokit can rapidly simulate 1 and 2-dimensional grids

of connected cells in parallel on personal computers’ GPUs. Connections between cells can

be specified manually, allowing simulations of arbitrary geometries to be set up and run. An

interesting direction for the future would be to optimize Myokit’s tissue simulation to run

large scale simulations on high-performance clusters. Since Myokit maintains a symbolic

version of the model equations, models may be optimized for large scale simulations, for

example using lookup tables (Cooper et al., 2014), splines (Chapter 4) or more advanced

techniques such as automated application of the Rush-Larsen method (Marsh et al., 2012).

Myokit’s capability of generating model code can also be used to provide cell models for

existing large-scale simulation libraries. Using Python’s ability to call on compilers, Myokit

could be set up as a front-end to such tools.

3.4.3 Sub-cellular modeling

AP models have included sub-cellular compartments for a long time, and these can easily

be incorporated into models in Myokit. Recently, models have also appeared that treat a

single cell as a system of many sub-cellular elements, each described by their own system

of ODEs (Nivala et al., 2012; Voigt et al., 2014). An interesting open question is in how

far such models can be simulated using the coupled-cell approach described in this chapter.

Alternatively, such simulations may be facilitated by adding a vector data type to Myokit.

Both options are viable targets for future investigation.

3.4.4 CellML support

Myokit is not a CellML tool per se, but it can read and write CellML 1.0 files for cardiac

AP models. Instead of relying on the official CellML API, Myokit converts CellML files

directly to Myokit models. The implementation is focused entirely on the features present

in the bulk of cardiac AP models: as such, DAEs and the <reaction> element used to

define biochemical pathways are not supported. The optional CellML features scripting

and automatic unit conversion are not supported either, although warnings will be raised

if a model with inconsistent units is loaded. Finally, Myokit does not support the import

statement introduced in CellML 1.1 or the MathML factorial element. Despite these

limitations, Myokit can read 163 out of the 165 cardiac models in valid CellML 1.0 available
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in the CellML repository, and 163 out of the 168 valid cardiac CellML 1.1 files.

3.4.5 Direct editing and generic experiments

Myokit’s file format allows a whole experiment to be contained in a single file so that model

and experiment can easily be archived. This encourages direct interaction with the models,

allowing users to familiarize themselves with the models by making changes and examining

the results. Alternatively, models can be loaded from separate files and changed using

scripting, without modifying the model file. This way, Myokit supports both the direct

experimentation typical of model development and the systematic approach required when

running experiments with previously established models. Ideally, it will act as a bridge

between the two worlds, allowing scientists from both domains to benefit from each other’s

work.

The ability to make changes programmatically also enables the creation of generic exper-

iments that can be run on an annotated set of reference models. Support for functional

curation (which accomplishes the same in a program-independent manner) is not included

but work is in progress to enable Myokit to interact smoothly with the tools provided by

Cooper et al. (2015a). Support for SED-ML, which is less versatile, is not currently planned.

3.5 Conclusions

Recent tools for AP modeling and simulation do not cater to model development. Further-

more, there is a gap between easy-to-use but limited simulation tools and more powerful

software packages that require greater skill from the user. Myokit is a new tool that bridges

this gap, allowing users to directly access their models and providing an easy-to-use interface

in which to do so. Models can be shared via import and export of common exchange formats

and the numerical methods implemented in Myokit can be used to set up and run complex

simulations and analyses with minimal programming effort. Scientists can use Myokit to

model and simulate, and thereby better understand the cardiac cellular action potential as

a basis for a multi-scale understanding of the beating of the heart.
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3.A Tools used in AP-model development

Table 3.1 lists the 60 models or model extensions published after 2001 (when CellML 1.0

was finalized) as found in the overview by Noble et al. (2012). While the list is slightly out

of date and not all papers we investigated mention the tools that were used, we believe this

gives a reasonable impression of the software used in modern AP-model development. The

first column gives the index from Noble et al. (2012), the second gives the reference and the

third column lists the used tools and, where possible, the ODE solver. The final column

highlights instances where CellML was used either before, during or after the modeling

process.

Table 3.1: Post-CellML modeling papers and the tools they use.

Index Model Tools CellML

2-32 Aslanidi et al. (2009a) C (MPI) Pre
1-25 Aslanidi et al. (2009b) C (MPI)
4-77 Aslanidi et al. (2012) C Pre
4-63 Benson et al. (2008) C (OpenMP)
4-37 Bernus et al. (2002) C++
1-21 Bondarenko et al. (2004) Fortran
2-29 Bueno-Orovio et al. (2008) Fortran
4-43 Cabo and Boyden (2003) Unknown
4-78 Carro et al. (2011) Fortran Post
4-61 Cherry et al. (2007) Java, C, Fortran
2-14 Clancy and Rudy (2002) MATLAB, C
1-29 Corrias et al. (2011) Chaste Post
1-24 Cortassa et al. (2006) MATLAB, C++ (CVODE)
4-49 Coutu and Metzger (2005) C++
4-72 Decker et al. (2009) MATLAB, C++
4-39 Fenton et al. (2002) Java, C, Fortran
4-51 Fink et al. (2006) MATLAB (ode15s)
4-64 Fink et al. (2008b) MATLAB
4-52 Flaim et al. (2006) MATLAB (ode23t)
2-15 Fox et al. (2002) C
3-3 Garny et al. (2003) C, Fortran, CMISS, COR During
4-75 Grandi et al. (2010) MATLAB (ode15s)
4-79 Grandi et al. (2011) MATLAB (ode15s)
4-41 Greenstein and Winslow (2002) C/Fortran
4-53 Greenstein et al. (2006) MATLAB
4-80 Heijman et al. (2011) MATLAB, C++
2-20 Hund and Rudy (2004) MATLAB, C++
1-26 Inada et al. (2009) C++
2-24 Iribe et al. (2006) MATLAB (ode15s) Post
1-22 Iyer et al. (2004) Fortran (LSODE)
4-42 Kneller et al. (2002) C
2-16 Kurata et al. (2002) MATLAB
1-27 Li et al. (2010) MATLAB Post
1-30 Li and Rudy (2011), 2011 C++
2-27 Livshitz and Rudy (2007) MATLAB
2-21 Lovell et al. (2004) MATLAB, Octave, C (CVODE)
4-73 Koivumäki et al. (2009) MATLAB (ode15s)
2-30 Mahajan et al. (2008) C
4-74 Maleckar et al. (2008) Unknown
2-25 Mangoni et al. (2006) Unknown
2-17 Matsuoka et al. (2003) Unknown
2-23 Michailova et al. (2005) MATLAB
4-44 Mitchell and Schaeffer (2003) Unknown
2-28 Niederer and Smith (2007) COR During
1-31 O’Hara et al. (2011) MATLAB, C++
4-45 Pandit et al. (2003) C (RK-Merson)
2-26 Pásek et al. (2006) MATLAB (ode15s)
4-66 Pásek et al. (2008) MATLAB (ode15s)
1-28 Sampson et al. (2010) Fortran (LSODE)
2-18 Sarai et al. (2003) Unknown
4-57 Sato et al. (2006) C
2-19 Saucerman et al. (2003), 2003 Berkeley Madonna
4-67 Saucerman and Bers (2008) MATLAB (ode15s)
4-46 Seemann et al. (2003) C
2-22 Shannon et al. (2004) C (CVODE)
4-58 Simitev and Biktashev (2006) Fortran (NAG)
2-31 Stewart et al. (2009) COR During
1-23 ten Tusscher et al. (2004) C++
4-59 ten Tusscher and Panfilov (2006) C++
4-69 Wang and Sobie (2008) MATLAB (ode15s)
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The number of times each tool was mentioned is given in Table 3.2. Note that some papers

used multiple tools.

Table 3.2: Tools, sorted by popularity.

Tool Mentions

MATLAB 22

C 17

C++ 12

Fortran 10

COR 3

Java 2

Octave 1

Chaste 1

CMISS 1

Berkely Madonna 1

Unknown 6

3.B Coupled cells and the monodomain model

Myokit provides a simulation engine for systems of coupled cells, connected through currents

following Ohm’s law. In this appendix we show how, under certain conditions, the same

simulation engine can be used to calculate solutions to the monodomain model.

In a coupled cell simulation, each cell’s transmembrane potential Vi changes according to

dVi
dt

= − 1

C

(
Iion,i + Istim,i + Idiff,i

)
Idiff,i =

∑
j

gij(Vi − Vj) .

Here the summation is taken over all cells j connected to cell i. While the simulation engine

allows arbitrary cells to be connected, in this section we assume the cells are arranged in

a regularly spaced rectangular grid and conductance only happens in orthogonal directions

x and y, parallel to the rectangle’s sides. Cells at the grid boundaries simply have fewer

neighbors and do not communicate with points outside the grid.

The monodomain equations (Leon and Horáček, 1991) are used to model tissue, where each

infinitesimal point in the tissue is described using:

∂V

∂t
= − 1

C

[
Iion + Istim −

1

χ

k

k + 1
∇ ·D∇V

]
= − 1

C
(Iion + Istim + Idiff) .

Here we have re-arranged the terms and changed the sign of Istim (called Iapp in the cited

source) to match the sign convention for transmembrane currents. Again, we only allow
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horizontal or vertical conduction and assume points at the edges of the tissue do not com-

municate with the outside world (“zero-flux boundary conditions”). If we then define a

regularly spaced rectangular grid with horizontal step size ∆x and vertical step size ∆y

and we apply a finite-difference approximation, the system takes on the same form as the

coupled cell simulation described above. For a node in the center of a 1-dimensional grid,

we find:

Idiff,i = − 1

χ

k

k + 1
∇ ·D∇Vi

≈ − 1

χ

k

k + 1
σx
Vi−1 − 2Vi + Vi+1

∆x2

≈ σx

χ∆x2

k

k + 1

(
(Vi − Vi−1) + (Vi − Vi+1)

)
≈

∑
j

gx(Vi − Vj) .

This shows that, to use Myokit’s coupled cell simulation for monodomain simulations on a

rectangular grid, we can set the “node-to-node conductance” as

gx = σx
1

χ

1

∆x2

k

k + 1
.

Similarly, in a 2-dimensional grid we set

gx = σx
1

χ

1

∆x2

k

k + 1

gy = σy
1

χ

1

∆y2

k

k + 1
.
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3.C An example of a full model

[[model]]
name: Tran-2009
# Initial values
membrane.V = -84.3801107371
ica.d      = 0.00302126301779861
ica.f      = 0.999967936476325
ik.x       = 0.0417603108167287

# Membrane potential
[membrane]
dot(V) = -(i_ion + i_stim)
    in [mV]
i_stim = engine.pace * stim_amplitude
    stim_amplitude = -73 [uA/cm^2]
i_ion = ica.i_si + ik.i_K + ik1.i_K1 + ikp.i_Kp + ib.i_b

# Slow inward calcium current
[ica]
use membrane.V as V
E = 80 [mV]
g = 0.09 [mS/cm^2]
i_si = g * d * f * (V - E)
    in [uA/cm^2]
dot(d) = (alpha * (1 - d) - beta * d)
    alpha = 0.095 * exp(-0.01 * (V - 5)) / (1 + exp(-0.072 * (V - 5)))
    beta  = 0.07 * exp(-0.017 * (V + 44)) / (1 + exp(0.05 * (V + 44)))
dot(f) = (alpha * (1 - f) - beta * f)
    alpha = 0.012 * exp(-0.008 * (V + 28)) / (1 + exp(0.15 * (V + 28)))
    beta  = 0.0065 * exp(-0.02 * (V + 30)) / (1 + exp(-0.2 * (V + 30)))

# Time dependent potassium current
[ik]
use membrane.V as V
i_K = g_K * x * xi * (V - E_K)
    in [uA/cm^2]
E_K = -77 [mV]
g_K = 0.282 * sqrt(parameters.Ko / 5.4)
    in [mS/cm^2]
xi = if(V > -100, xibar, 1)
xibar = 2.837 * (exp(0.04 * (V + 77)) - 1) / ((V + 77) * exp(0.04 * (V + 35)))
dot(x) = (alpha * (1 - x) - beta * x) / gamma
    alpha = 0.0005 * exp(0.083 * (V + 50)) / (1 + exp(0.057 * (V + 50)))
    beta  = 0.0013 * exp(-0.06 * (V + 20)) / (1 + exp(-0.04 * (V + 20)))
gamma = 1

# Time-independent potassium current
[ik1]
use membrane.V as V
E = parameters.RTF * log(parameters.Ko / Ki)
g = 0.6047 * sqrt(parameters.Ko / 5.4)
    in [mS/cm^2]
Ki = 145 [mM]
i_K1 = g * (alpha / (alpha + beta)) * (V - E)
    in [uA/cm^2]
    alpha = 1.02 / (1 + exp(0.2385 * (V - E - 59.215)))
    beta = numer / denom
        numer = (0.49124 * exp(0.08032 * (V - E + 5.476)) + exp(0.06175 * (V - E - 594.31)))
        denom = (1 + exp(-0.5143 * (V - E + 4.753)))        

# Plateau potassium current
[ikp]
use membrane.V as V
i_Kp = g * Kp * (V - ik1.E)
g = 0.0183 [mS/cm^2]
Kp = 1 / (1 + exp((7.488 - V) / 5.98))

# Background current
[ib]
i_b = g * (membrane.V - E)
    in [uA/cm^2]
E = -59.87 [mV]
g = 0.03921 [mS/cm^2]

# External values
[engine]
time = 0 bind time
pace = 0 bind pace

[parameters]
Ko = 5.4 [mM]
RTF = 26.712 [mJ/C]
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Figure 3.10: A Myokit representation of the simplified model by Tran et al. (2009).
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Reducing run-times of AP model

simulations by automatically replacing

computationally expensive functions

with splines

This chapter is based on:

Michael Clerx, Pieter Collins (2014). Reducing run-times of excitable cell models by

replacing computationally expensive functions with splines. Presented at Mathemat-

ical Theory of Networks and Systems, Groningen 2014 (peer reviewed proceedings).

Volume 21, pages 84–89.

Abstract

Numerical simulation of muscle cells and tissue is an established tool in cardiac electrophysi-

ology, where the electrical behavior of excitable heart muscle cells is commonly modeled as a

stiff, non-linear system of ordinary differential equations. A common feature of this system’s

right-hand side is the heavy use of computationally expensive univariate functions of the mem-

brane potential. We investigated the performance benefits of replacing these functions with

cubic spline approximations in an automated model simplification process. Clear performance

gains were found when evaluating the right-hand side in isolation and when performing multi-

cellular simulations using a simple forward Euler method. Single cell simulations run with

an adaptive method saw smaller gains due to an increase in overhead and a decrease in the

number of function evaluations. A parallel multi-cellular simulation was also investigated, but

the overhead of the implementation overshadowed the evaluation time of the right-hand side.
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4.1 Introduction

Since their introduction in the second half of the 20th century, ODE models of the cardiac

action potential (AP) have become increasingly complex. From a computational efficiency

point of view modern AP models contain many expensive-to-evaluate functions, especially

univariate functions of the membrane potential V making heavy use of the exponential

function (Heijman et al., 2011; O’Hara et al., 2011; Mahajan et al., 2008; Stewart et al.,

2009). As more is learned about the complexity of the mammalian heart, the number

of equations used to model a single cell is growing. This conflicts with the need to run

simulations fast and the desire to create personalized models of the whole human heart,

which contains roughly 5 · 109 of such cells (Olivetti et al., 1995).

For this chapter we investigated the performance gain to be had from replacing compu-

tationally expensive parts of the right-hand-side (RHS) of the differential equations with

faster-to-evaluate approximations. Numerical experiments were run in which selected equa-

tions were replaced with cubic spline approximations, and the effects on the RHS evaluation

times were measured. We examined the influence of using a simplified RHS in three sce-

narios: single cell simulations using an advanced numerical solver, multi-cell simulations

without parallelization, and multi-cell simulations run in parallel on a graphics processing

unit (GPU).

To the best of our knowledge, no similar attempts have been reported. Although Mirin

et al. (2012) report using rational function approximates for the same purpose as part of a

larger effort to simplify the model by ten Tusscher and Panfilov (2006), our approach differs

in two ways: Firstly, in our approach we use splines, which are more stable and flexible

when approximating functions with strong localized variations and may evaluate faster,

and secondly, instead of simplifying one specific model we have described and implemented

a generic approach. Cooper et al. (2010) did implement an automated system, but used

look-up tables instead of function approximation.
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4.2 Methods

All simulations and benchmarks were carried out using Myokit (see Chapter 3). The used

models were either re-implemented from the published equations, or imported from the

CellML (Cuellar et al., 2003) model repository (http://models.cellml.org).

4.2.1 Models of the AP

As described in Section 3.2.1, an AP model’s RHS can be broken down into two parts:

dV

dt
= − 1

C

(
Iion(V, u, p) + Istim

)
(4.1)

du

dt
= f(V, u, p) (4.2)

Here, f(V, u, p) is a non-linear and typically stiff system of equations. In electrophysiological

terms, it contains both fast and slow currents. For example the fast sodium current rises

and falls in a time span of < 5ms, whereas the slow delayed rectifier potassium current can

take several seconds to reach its peak. More details are given in Section 3.2.1.

For a classic example of a cardiac myocyte model and the accompanying equations see Beeler

and Reuter (1977) or Luo and Rudy (1991). A good example of the complexity of modern

models is found in the detailed appendix to Heijman et al. (2011). In Table 4.1 an example of

a reduced AP model is presented. These equations describe the Morris-Lecar model (Morris

and Lecar, 1981), a reduced form of the original neuronal model by Hodgkin and Huxley

(1952d), which contains only two state variables. In this example, an external input forcing

the system is given as the dimensionless value pacing .

Table 4.1: The reduced Morris-Lecar model

dV

dt
= − 1

C
[Iion + Istim]

C = 20

Iion = IK + ICa + Ileak

IK = gK (V − EK)

EK = −84

gK = 8w

winf = 1
2

[
1 + tanh

(
V−2
30

)]
wtau = 1/

[
cosh

(
V−2
60

)]
V (t = 0) = −60.86

dw

dt
= 0.04

winf − w
wtau

ICa = gCa (V − ECa)

ECa = 120

gCa = 4.4minf

minf = 1
2

[
1 + tanh

(
V+1.2

18

)]
Ileak = 2 (V + 60)

Istim = −80× pacing

W (t = 0) = 0.015

A characteristic feature of AP models is that they contain many computationally expensive

functions that depend only on the membrane potential V . We automatically identify these

functions and replace them by spline approximations which are faster to evaluate. Most
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of these functions are found in ion channel models, which are a phenomenological class

of models so that no valuable information is lost by altering the form of the expression.

Furthermore, the precision of cell models is limited, and, as we illustrate in the next two

sections, the stability of the ODE integrator takes precedence over the accuracy of the

evaluation of the RHS.

4.2.2 Single cell simulations

For detailed modern single-cell models the RHS is a costly function to evaluate and the

system of equations is stiff. As a result, higher-order adaptive schemes that require multiple

RHS evaluations or suffer from reduced stability fail to produce any performance benefits.

Implicit methods offer greater stability and therefore bigger step sizes, but the need to

approximate the next solution often involves more RHS evaluations which can counteract

this benefit. In addition, the Jacobian of an AP model is not typically available analytically.

For some good examples of complex models see Heijman et al. (2011), Mahajan et al. (2008)

or O’Hara et al. (2011). As a result, the explicit forward Euler method has remained a

competitive choice. A difficult to implement, but much faster approach is to use an implicit

adaptive multi-step method, e.g., CVODE (Hindmarsh et al., 2005, see Section 3.2.5). The

multi-step approach means only a limited number of RHS evaluations per time step are

required; in most cases a single evaluation per step is sufficient (see Fig. 4.2.D). Cardiac AP

models are typically paced (forced) periodically with a block wave stimulus, which introduces

two discontinuities per cycle. At these points, it is necessary to reset the simulation routine,

leading to a higher number of steps around those points.

4.2.3 Multi-cell simulations

Single cell models can be used for multi-cellular simulations by simply duplicating the single

cell state vector. Without any interaction between the cells, the system’s Jacobian takes on

a diagonal block structure. Connections between the cells are then introduced in the form

of a diffusion current. For details see Section 3.2.1.1.

The most common strategy for running multi-cell simulations is to use the explicit forward

Euler method. There are a number of reasons for this. First of all, in a multi-cell simulation,

the evaluation time of the duplicated RHS becomes extremely high so that methods requiring

multiple evaluations all incur a strong increase in overhead. Secondly, in the single cell case

the system’s fast dynamics are highly localized in time (about 5ms per 1000ms for a heart

rate of 60bpm) and occur at the onset of excitation. In a multi-cell scenario each cell’s

excitation triggers its neighbors’ excitation with a small delay, causing the fast dynamics

(and the need for a small step size) to be spread out over a much larger time. In extreme

cases (which are often of high scientific interest) some part of the tissue is undergoing rapid

changes at any given time (e.g., during re-entry, see Fig. 3.7). This limits the utility of
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adaptive methods. Finally, when performing parallelized multi-cellular simulations on GPU

devices the cost of memory access and synchronization is such that a simple forward Euler

scheme is almost always faster than a more complex approach requiring the storage of

multiple state or derivative vectors.

Garcia et al. (2011) report experimenting with different adaptive Runge-Kutta pairs before

selecting the simplest tested method: an explicit Euler / Heun pair. They report a 25%

speed-up over fixed size forward Euler. Unfortunately, few details are given and we were

unable to reproduce this result.

4.2.4 Selecting expressions for approximation

As a first step in model simplification, a model was chosen and a number of expressions

were selected for approximation. A symbolic version of the model’s equations was obtained

(using Myokit, this is automatically available) and scanned for univariate functions of V .

Care was taken to include functions both directly and indirectly dependent on V . For these

functions, a spline was calculated using the methods described in Section 4.2.5 and accepted

or rejected based on the accuracy of the fit. The approximated equation was then removed

from the symbolic model and replaced with a piecewise polynomial with the calculated spline

coefficients. Finally, the new symbolic model was exported to standard C or OpenCL and

used for benchmarking either the RHS or a full simulation.

4.2.5 Spline fitting procedure

A cubic spline function g (V ) was fit to each selected function f (V ) on the interval I =

[−100mV, 150mV]. Spline coefficients were set by imposing df
dV = dg

dV at the endpoints of

I, setting g (xi) = f (xi) at each knot xi and then solving the resulting linear system. The

absolute and relative errors in the fit were estimated by sampling both functions at 1000

evenly spaced points on the selected interval and calculating

eabs = max |f − g| (4.3)

erel = max |f − g|/(max f −min f) (4.4)

over the full sample. The tolerance was set to eabs ≤ 10−3 and erel ≤ 10−5. Whenever

these limits were exceeded an extra knot was added at the point with the highest error. If

a set maximum number of pieces (100) was reached the procedure was halted and an error

returned, marking the function as unfit for approximation.

4.2.6 Benchmarking

Single and multi-cell simulations were benchmarked by recording the times just before and

after a simulation was run. Single-cell simulations were run using a simulation built on
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Myokit’s Simulation class, which creates, compiles and executes C code using CVODE to

integrate the ODE.

RHS evaluation times were measured using the following procedure: A simulation was run

and the state vector was saved for every position. Next, a benchmarking tool revisited

each state multiple (tens of thousands) times and measured the average execution time.

For this purpose, a class RhsBenchmarker was added to Myokit that performs either full

RHS evaluations or partial ones, allowing the evaluation time of selected equations to be

measured.

4.3 Results and discussion

4.3.1 Potential benefits of using splines

To demonstrate the performance benefits of spline approximations, cubic spline approxima-

tions using 32-piece1 splines were created for the following functions:

f0 (V ) = exp (V/100) (4.5)

f1 (V ) = exp (0.01V ) (4.6)

f2 (V ) = 1/ [1 + exp ((V + 40) /− 10)] (4.7)

f3 (V ) = 1/ [7 exp ((V + 12) /35) + 9 exp (− (V + 77) /6)] (4.8)

f4 (V ) = 1/ [1 + exp (−0.1 (V + 40))] (4.9)

f5 (V ) = 1/ [7 exp (0.03 (V + 12)) + 9 exp (−0.2 (V + 77))] (4.10)

The first function is a minimal example of an exp function, scaled to the range I. The

second function shows the performance benefit of multiplication over division, compared to

the run-time of an exp evaluation. The third and fourth equations are adapted from the fast

sodium channel formulation of (O’Hara et al., 2011) and are typical examples of the kind of

equation we hoped to simplify. The function f2 represents the steady-state value of one of

the state variables, m, and defines a sigmoid curve. The function f3 is the voltage dependent

time constant with which m approaches its steady state value and defines a “hat” or “bell”

shape over I. The final two equations show the effect of replacing division operations with

multiplication in f2 and f3.

The performance gains are shown in Table 4.2. Here, the original evaluation time of the

equation is given as Teq while the spline evaluates in T seq. The resulting speed-up is given

by F seq = T seq/Teq. As can be seen, the performance of the splines is invariant with respect

1 Splines with 32 pieces provided accurate fits in each of these examples. As can be seen in Fig. 4.1.B, the
evaluation time of a full spline depends only weakly on the number of pieces used and using, for example, a
64-piece spline gives roughly the same results.
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Table 4.2: Performance gains for single function approximation.

Function Teq (ns) T seq (ns) F seq

f0 25.9 5.08 20%
f1 23.8 5.07 21%
f2 27.4 5.10 19%
f3 53.8 5.07 9%
f4 24.4 5.10 21%
f5 48.3 5.10 11%

to the run-time of the original function, leading to large speed-ups for complex expressions.

This illustrates the potential advantage of spline approximations in the RHS.

4.3.2 Accuracy of fit versus performance

Experiments were run to asses the trade-off between spline accuracy and run-time using the

reduced Morris-Lecar model for excitable cells (see Table 4.1). The expressions for winf ,

wtau and minf were each selected for simplification: spline approximations were generated

for each with an increasing number of segments (from 2 to 200). For each generated spline,

a single cell simulation was run using CVODE. All simulations were started from a common

set of initial values.2 Results are shown in Fig. 4.1.

As can be seen, increasing the number of pieces reduces the error of fit almost without

affecting the RHS evaluation time, which shows a reduction to about 13% of the evaluation

time of non-optimized case. The difference between state variable w with and without the

approximation was tracked and seen to stabilize around 10 pieces. Similarly, the number

of steps taken by the adaptive solving scheme and the total number of RHS evaluations

performed in a simulation reached a stable average at about 5 pieces.

From these results we conclude that (1) Increasing the number of pieces in a spline below the

minimum number required to achieve acceptable accuracy does not dramatically affect RHS

evaluation time. As a result, no special strategy to keep the number of pieces in a spline

to a minimum is required. (2) Using spline approximations increases the number of steps

taken by the adaptive solver, but the increase does not seem to be affected by the number of

pieces. (3) The accuracy of the produced result increases significantly as the spline quality

increases but then stabilizes once the maximum relative error of fit has gone below 10−3.

We speculate that the unusually high and seemingly random variation in the number of RHS

evaluations and integrator steps was caused by the higher-order discontinuities at the spline

knots. This is discussed briefly in Section 4.3.3.2.

2 A similar test was run where models were “pre-paced” for 105 periods before the steps taken were
measured, but no significant difference with the pre-pacing free case was found.
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Figure 4.1: Effects of the number of pieces in a spline, measured in the reduced Morris-Lecar model. (A)
The relative error in the spline approximation and the resulting total error in state variable w during a full
simulation, calculated as

∑
i(w

s
i −wi)2 where wsi and wi are the values of w at a 1000 linearly spaced points

during the simulation with and without splines respectively. (B) The average RHS evaluation time with
approximations using an increasing number of pieces and for the unmodified RHS. (C) The number of steps
taken by an adaptive solver and the number of RHS evaluations performed during a simulation. Thick lines
indicate the corresponding values for the unoptimized RHS.
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Table 4.3: Model run times and performance.

Model Ns Ne Nr F bRHS F sRHS T0 F s0 M0 Ms
0 F s1

Tran et al. (2009) 4 24 11 28% 17% 0.5ms 69% 359 350 -
Luo and Rudy (1991) 8 37 17 30% 24% 1.7ms 56% 847 773 25%
Stewart et al. (2009) 20 106 38 50% 48% 3.7ms 80% 942 991 51%
O’Hara et al. (2011) 41 249 67 53% 64% 12ms 98% 1483 2586 -
Decker et al. (2009) 48 204 48 74% 72% 13ms 88% 1646 1594 73%
Sampson et al. (2010) 81 299 107 39% 85% 38ms 97% 3277 3209 78%
Heijman et al. (2011) 145 514 61 80% 88% 83ms 98% 4165 4071 89%

4.3.3 Performance gain in complex models of the AP

Next, we applied our automated spline simplification routine to seven increasingly complex

models of the cardiac AP. The resulting performance gains are shown in Table 4.3. In this

table, Ns and Ne are the number of state variables and equations in each model respectively,

while Nr is the number of those equations that could be simplified. F bRHS is an estimate of

the best performance achievable through spline approximation. It was calculated by measur-

ing the full RHS evaluation time, TRHS, and the RHS time when the Nr selected equations

were omitted entirely, T bRHS, and then calculating the ratio F bRHS = T bRHS/TRHS. The ac-

tual performance was evaluated by replacing the Nr selected equations with splines and

measuring the new evaluation time T sRHS before calculating the ratio F sRHS = T sRHS/TRHS.

The time required to perform a one-second single-cell simulation with the unoptimized mod-

els is given as T0. As can be seen, this increases with an increasing model size (as indicated

by Ns and Ne). The performance increase when using splines in these simulations is given as

F s0 = T s0 /T0 where T s0 is the run-time of a one-second single-cell (“zero dimensional”) simu-

lation using splines. The adaptive step-size algorithm treats the optimized and unoptimized

models differently, as is shown by the number of RHS evaluations in the unoptimized model

M0 and in the optimized one Ms
0 . Finally, F s1 = T s1 /T1 represents the speed-up gained in

an unparallelized fixed step-size cable simulation.

Note that the smaller the F -value, the larger the performance gain using splines. The time

taken to perform the spline approximations was not included in any of the benchmarks.

4.3.3.1 RHS Evaluation times

The results in Table 4.3 show that employing spline approximation decreased the RHS eval-

uation time in each case: F sRHS is always less than 100%. However, the utility of function

approximation is seen to decrease with increasing model complexity. This can be attributed

to two factors: the inclusion of more multivariate equations (for example signaling, intracel-

lular diffusion processes or calcium concentration dependent currents) and a shift towards

models that contain more equations but of a simpler form (for example Markov model for-

mulations of ion channel currents instead of Hodgkin-Huxley type ones).
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For small models, the performance of the spline-based RHS sometimes exceeds our calculated

estimate F bRHS. This is a side-effect of the many optimizations employed by modern compilers

and hardware, which make it difficult to get consistent benchmarking results when comparing

short run-times.

4.3.3.2 Single cell simulation run-times

The results for single-cell simulations show a smaller speed-up than expected on the basis of

the RHS performance alone. We initially hypothesized that this may be due to the higher-

order discontinuities created at the knots, but this would suggest a strong relation between

the number of pieces used and the number of steps taken. No such relation was found, as

can be seen in Table 4.3. Experiments using splines with higher orders of continuity failed to

show a consistent performance gain in terms of number of steps. By comparing the number

of RHS evaluations taken in simulations with and without spline approximations, given in

Table 4.3 as M0 and Ms
0 , it can be seen that even with a reduced number of evaluations the

performance gain is not proportional to that in the RHS evaluation times. This suggests

overhead of the ODE solver is a bigger factor in these simulations and the impact of RHS

run-time reduction is reduced.

To gain insight into the adaptive behavior of the CVODE solver, we implemented a tracking

mode that logs the number of evaluations taken and the system time at each step of a

simulation. Fig. 4.2 shows the results for a one-second simulation using the model by Decker

et al. (2009). As can be seen from the top half of the figure, most of the work done during

a simulation occurs during the action potential, the period when the membrane potential

is elevated from its usual resting state of around −80mV. This example, which is typical

for ventricular myocyte models, shows how most of the system’s fast dynamics are localized

around the start and finish of the AP. The lower half of the figure clearly shows why this

method is efficient in terms of RHS evaluations: the most common number of evaluations

needed at each step is 1 with occasional short bursts of around 50 evaluations, leading to

an average of 3.1 evaluations per step throughout the simulation. This average ranges from

1.6 to 6.0 evaluations per step for the models described in Table 4.3.

4.3.4 Multi-cell simulation

Non-parallel multi-cellular simulations were run using Myokit’s Simulation1D class, which

uses an explicit forward-Euler method to integrate the ODE. As described in Section 4.2.3,

this is often the best approach for multi-cellular simulations. Without a step-size choosing

algorithm or other complicating factors, the performance boost in this scenario matches

that seen in single RHS evaluation times. This can clearly be seen in Table 4.2, where the

speed-up F s1 closely follows F sRHS. In two models, no wave propagation was observed so no

speed-ups could be measured.
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figures above.
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An OpenCL-based parallel version of this simulation was implemented, but was unable

to produce any speed-ups on a GPU. Indeed, we found that eliminating the simplified

calculations from the RHS entirely only lead to marginal speed-ups, indicating that the

RHS evaluation time is of little importance in our parallel implementation. We suspect

that the overhead of memory access and synchronization in this case is a bottleneck in our

calculations.

4.4 Conclusion

Splines are a natural candidate for providing simplified approximations to univariate func-

tions occurring in the right-hand side of a differential equation model of excitable cells.

In this chapter, we show that the use of cubic spline approximations can reduce the time

needed to evaluate an AP model’s RHS. Further, the lack of higher-order smoothness at

the spline knots does not negatively affect the number of RHS evaluations needed by the

sophisticated implicit multi-step method used by the ODE solver CVODE. The time bene-

fit of this optimization was seen directly in unparallelized multi-cell simulations, but failed

to materialize fully in single cell simulations using CVODE, and had no effect on parallel

multi-cell simulations using the forward Euler method run on the GPU. We suggest that the

RHS evaluation time is overshadowed by overhead resulting from the solver in the former

case, and from overhead of memory access due to the hardware architecture in the latter.

Given the speed-ups obtained in the evaluation of the RHS, we believe that this method

may still be useful in situations where RHS evaluation time is a dominant factor, either in

the field of cellular electrophysiology or in other domains. If memory access can be made

cheaper in GPU simulations, the method may provide considerable speed-ups.
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Abstract

Recent work has shown the increased predictive power of cardiac action-potential models that

include variability in their parameters. Yet quantitative data on variability in the kinetics of

ionic currents is scarce. We investigated and quantified variability in one of the major ionic

currents, the cardiac fast sodium current INa. Using a simple voltage step experiment, we

found that time constants of inactivation varied between roughly one-half and twice the most

common value. This suggests that a skewed, perhaps lognormal, distribution is appropriate

when modeling variability in time constants. Time constants of fast and slow inactivation were

linearly correlated (R=0.66). Next, we performed a literature review and found that midpoints

of activation and inactivation were reported over a 40mV range. Midpoints of activation

and inactivation were both approximately normally distributed. Midpoint of activation and

inactivation showed a linear correlation (R=0.82) and linear regression suggested an average

distance of approximately 40mV between midpoints. Fluctuations in the distance between

midpoints also appear approximately normally distributed. By reviewing the literature on

sources of variability in patch-clamp experiments such as temperature, time since membrane

rupture and liquid junction potential, we showed that the observed variability exceeds that

which can be expected from experimental conditions alone. Finally, we used computational

models to show that the observed variability affects the cellular action potential, and leads to

variability in the automaticity of isolated Purkinje cells.
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5.1 Introduction

Variability in the maximum conductance and in the dynamical properties of cardiac ion chan-

nels has been linked to critical differences in the response to antiarrhythmic drugs (Sarkar

et al., 2012; Britton et al., 2013), and may be a factor explaining the diverse arrhythmias

sometimes observed between different carriers of the same mutation (Remme et al., 2008;

Weiss et al., 2012, 2015). Incorporating variability into models of the action potential (AP)

has been identified as one of the key challenges in the future of cardiac cellular electrophys-

iology (Abriel et al., 2013) and was the subject of a white-paper featured recently in the

Journal of Physiology (Mirams et al., 2016). Yet, studies with an experimental basis that

quantify the variability in even the major cardiac ion currents are scarce.

In the present study, we have investigated variability in the kinetical parameters of the

cardiac fast sodium current INa, which is responsible for the initial rapid upstroke of the

AP, and plays a major role in AP propagation. Abnormalities in INa have been linked

to long-QT syndrome (type 3), Brugada syndrome, cardiac conduction disease, atrial and

ventricular fibrillation, ‘overlap syndromes’ and more (Amin et al., 2010). While some

studies of variability in ionic currents have focused entirely on changes in maximum con-

ductance (Sánchez et al., 2014; Chang et al., 2015; Passini et al., 2016), others have shown

the predictive power of including variability in kinetic parameters such as time constants of

(in)activation (Romero et al., 2009; Sarkar and Sobie, 2011; Britton et al., 2013). In contrast

to changes in maximum conductance, which can be explained by variable ion channel expres-

sion levels and measured using protein counting techniques, measuring variability in kinetics

requires cellular-electrophysiological experiments and a careful analysis of the experimental

factors influencing these results.

Our study proceeds in three parts. First, we perform simple voltage-step experiments and

fit a mathematical model to the results to quantify variability in the time constants of inac-

tivation. With these experiments we show that variability between cells occurs even under

controlled conditions. Next, we conduct a review of previously reported midpoints of activa-

tion and inactivation. This provides an insight into the variability in repeated measurements

in and between different laboratories, over a time span of several years. Finally, we incorpo-

rate the observed variability into computational models and show the effect of variability on

the AP of ventricular and Purkinje cells. By comparing our results to estimates of the un-

certainty due to experiment and analysis, we argue that this variability is not experimental

noise but an inherent property of the channels. A graphical overview of the study is given

in Fig. 7.1.
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Figure 5.1: Graphical overview of this study. We performed patch-clamp experiments to characterize
and quantify variability in the time constants of INa inactivation, after transfection of wild-type SCN5A.
Next, variability in midpoints of activation and inactivation was studied by reviewing the existing literature.
With this knowledge in hand, we can move from conventional average-based modeling to variability-aware
modeling, which predicts not just a single outcome but a biologically realistic range of outcomes.

5.2 Methods

5.2.1 Experimental set-up

To determine whether variability could be observed in a simple, well-controlled experiment,

we investigated the currents elicited by applying a single voltage step to cells expressing

human SCN5A. To quantify the results, a Hodgkin-Huxley style model was fit to the data

using whole-trace fitting, which gives more reliable results than the conventional ‘disjoint’

method of analysis (Willms et al., 1999). Based on the results of an analysis by Walch and

Eisenberg (2015), we concentrated on the time constants instead of the steady-states, as the

latter cannot be determined uniquely (i.e., variability in fitted parameters may be observed

even for identical currents) unless the initial state of the system is known exactly. Finally,

we chose to focus on inactivation alone because the membrane-charging process can interfere

with recordings of INa activation (Sherman et al., 1999). A further description of the last

two points is provided in the Supplement.

5.2.2 Electrophysiological measurements

Chinese hamster ovary (CHO) cells were cultured in 35 mm dishes with Ham’s F-12 medium,

supplemented with 10% fetal calf serum and 1% penicillin/streptomycin. Cells were tran-

siently transfected with human WT SCN5A (NCBI reference sequence NM 000335.4, isoform

b) and green-fluorescent protein (2.5µg pIRES-WT-SCN5A-GFP) using Fugene 6 (Promega
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Benelux, Leiden, The Netherlands) as transfection agent. Fluorescence was boosted by

adding an additional 0.25µg of DNA coding for fluorescent protein (0.25µg pIRES-empty-

GFP).

The cells were then incubated for 24 hours at 37°C, briefly trypsinized and washed twice in

culture medium. They were then placed on an inverted microscope in a bath perfused

continuously with a solution containing (in mmol/L): 145 NaCl, 4 CsCl, 1 MgCl2, 1.8

CaCl2, 10 HEPES, and 11.1 glucose (pH=7.4 with CsOH). Pipettes were filled with (in

mmol/L): 10 NaCl, 120 CsCl, 20 TEACl, 5 MgATP, 5 EGTA, and 5 HEPES (pH=7.2

with CsOH). Patch pipettes were pulled and fire-polished using a DMZ-Universal-Puller

(Zeitz-Instruments Vetriebs GmbH, Martinsried, Germany) from 2mm borosilicate glass

capillaries (Science Products GmbH, Hofheim, Germany). Experiments were performed at

room temperature, which was measured as 22± 1.5°C.

Data was collected using three set-ups: An Axopatch 200B amplifier, Digidata 1322A digi-

tizer and Clampex 8.2.0, an Axopatch 200B amplifier, Digidata 1440A digitizer and Clam-

pex 10.2.0, and an Axopatch 1D amplifier, Digidata 1322A digitizer and Clampex 8.2.0 (all

Molecular Devices, Sunnyvale, CA, USA). Green fluorescent protein was used to identify

cells with successful transfection, which were then patch-clamped in the whole-cell configu-

ration. Access resistance was below 8MΩ for all cells. Cell capacitances ranged from 5.5pF

to 47pF. Series resistance compensation (60 to 80%) was employed, with ‘prediction’ enabled

on the amplifiers that provided this (see Sherman-Gold and Maertz, 2012). Data was filtered

at 1kHz using the analog low-pass 4-pole Bessel filter on the amplifiers and subsequently

digitized at 20kHz.

Directly after rupturing the membrane, cells were stimulated repeatedly with a single voltage

step, until the observed peak current had stabilized. Subsequently, a protocol with increasing

voltage steps was run (used to characterize voltage-dependent activation). From this data

the current elicited by a step from −120mV to −20mV was extracted. All steps were

preceded by a few seconds at −120mV to inactivate the channels.

Capacitance artefacts were filtered digitally by omitting data from the first ta milliseconds

after each change in potential. The value for ta was set manually for each recording, and was

in the order of 0.5ms. To estimate the leak in each signal, we fit a simple biexponential curve

to the decaying part of the current: Ifit = Ileak + c1e
−t/τ1 + c2e

−t/τ2 . Here, Ileak, c1, c2, τ1

and τ2 were cell-specific parameters that were determined by minimizing the sum-of-squares

error between Ifit and the recorded I using a downhill simplex method (Nelder and Mead,

1965). The entire signal was then corrected by subtracting the estimated Ileak.
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5.2.3 Quantifying time constants of inactivation

To quantify differences between experimental recordings, a Hodgkin-Huxley style model of

INa was fit to each recording. We used the equations by Beeler and Reuter (1977), but

without the constant term gNaC that was intended to capture background sodium current.

The resulting model includes slow and fast inactivation, and has the form:

INa(t) = m3 · h · j · g · (V − E) (5.1)

dm/dt = (m∞(V, p)−m)/τi(V, p) (5.2)

dh/dt = (h∞(V, p)− h)/τh(V, p) (5.3)

dj/dt = (j∞(V, p)− j)/τj(V, p) (5.4)

Here, g is the fixed maximum conductance, V is the membrane potential and E is the

reversal potential for INa. The model has a single activation variable m, a fast inactivation

variable h and a slow inactivation variable j. After a change in membrane potential, each of

these variables approaches a voltage-dependent steady state (m∞, h∞ and j∞) with a speed

determined by its time constant (τm, τh and τj). The steady states and time constants are

all functions of V and a vector of parameters p. When m∞(V, p) is plotted against voltage

it forms a sigmoid curve and the voltage at which it passes through 0.5 is the midpoint of

activation. The midpoint of inactivation is the voltage at which h∞(V, p) passes through

0.5. We used the equations for the steady states and time constants from Beeler and Reuter

and rewrote them in a parametrizable form, leading to a model with 16 parameters (not

including the reversal potential E or maximum conductance g). The complete equations are

given in Section 5.A.

When a voltage step is applied to a cell, its membrane potential approaches the applied

command potential in a process well approximated by:

dV

dt
=
Vcmd(t)− V

τc
(5.5)

where Vcmd(t) is the desired command potential, V is the actual membrane potential and τc

is a time constant dependent on the membrane capacitance, series resistance, and amplifier

series-resistance compensation settings (Sigworth, 1995). For INa, this charging time is in

the same order as the time constant of activation, even when applying series-resistance

compensation (Sherman et al., 1999). We therefore included Vcmd in our model as an

instantaneous voltage step and modeled V using the above equation. The time constant

of the compensated charging process τc was added as an additional model parameter to be

estimated in our model fitting procedure (see also Clerx et al., 2015).

Model parameters were estimated from measured currents by minimizing a score function

f(p) =
∑
t [Isim(p)− Iref]

2
, where the sum was taken over all sampled instances. Function
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minimization was performed using a parallelized particle swarm optimization (PSO) method

(Eberhart and Kennedy, 1995). This method requires no derivatives, can deal well with non-

smooth functions, and has been reported to perform well on ion-channel model fitting tasks

(Loewe et al., 2013, 2016). PSO uses many (pseudo-)random steps, which means it may

not always return the same value when re-applied, especially on noisy data. Our parameter

vector included the 16 parameters determining the model’s time constants and steady states,

the maximum conductance g, and the membrane charging time constant τc. The reversal

potential E was held constant at E = 50mV. A small number of heuristic modifications

were made to the score function to ensure good fits for all cells: First, based on our analysis

of the error introduced by the slowly charging membrane, we fit only to the signal starting

approximately halfway into the initial downslope. Next, we added a number of constraints

to ensure the variables took on the role of activation and (fast and slow) inactivation. We

used m∞(−20, p) ≥ 0.5, h∞(−20, p) ≤ 0.5 and j∞(−20, p) ≤ 0.5 and constrained the time

constants with τm(−20, p) < τh(−20, p) < τj(−20, p) and the heuristics τh/τm ≤ 75 and

τj/τm ≤ 400.

5.2.4 Computational methods

Simulations of the cellular AP were performed using the human ventricular model by Grandi

et al. (2010) and the human Purkinje model by Stewart et al. (2009). Both models include

an INa formulation based on the human ventricular model by ten Tusscher and Panfilov

(2006). All simulations were carried out using Myokit (see Chapter 3). Patch-clamp data

preprocessing and ion-current model fitting were performed using Myokit and NumPy/SciPy

(Jones et al., 2001).

5.2.5 Review of midpoints of (in)activation

In the second part of our research, we conducted a review of published midpoints of activa-

tion and inactivation of INa. These midpoints are widely reported, allowing a large number

of experiments to be compared. In addition, they are measured and calculated in a more

uniform way than time constants or other channel characteristics. Peak current was not

investigated as it varies strongly with channel density, activation and inactivation kinet-

ics, and measurement factors such as temperature, sampling rate, and the applied voltage

protocol.

Published recordings of INa in human myocytes are limited, with notable exceptions being

Sakakibara et al. (1992); Schneider et al. (1994); Feng et al. (1996) for atrial myocytes and

Sakakibara et al. (1993) for ventricular cells. By contrast, studies with cloned human sodium

channels in expression systems are far more common. Typically, these studies investigate

the changes caused by a mutation, but also report midpoints measured with wild-type (WT)

DNA. This allowed us to collect a large number of reports of WT midpoint of activation
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Table 5.1: Collected reports of either midpoint of activation, midpoint of inactivation or both, split by
α-subunit. Where possible, GenBank accession numbers are provided. The total number of reports using
each α-subunit is given as N. For every subtype, the number of reports made with β1-subunit co-expression
is given as β1. Finally, the number of reports N (with and without β1-subunit) is broken down according
to the expression system used (HEK293 or tsA201, Xenopus oocytes and CHO cells). The totals for each
subgroup are given on the bottom row.

Code Description Acc. No. N β1 HEK Ooc. CHO
a Isoform a (Q1077) AC137587 25 4 23 0 2
b Isoform b (Q1077del) AY148488 28 7 23 1 4
a* hH1 (R1027Q) M77235 67 42 49 16 2
b* hH1a (T559A; Q1077del) None 6 3 6 0 0
? Unknown None 41 24 38 2 1

167 80 139 19 9

and inactivation.

Table 5.1 shows the number of reports from expression system experiments collected in

our study. The pore-forming, α-subunit expressed in these experiments differed slightly,

and included the 2016 amino-acid long reference sequence (isoform a), the naturally more

common isoform with a deletion at position 1077 (isoform b) and variants of both a and

b with a slight variation not commonly found in human DNA, which we dubbed a* and

b* (Makielski et al., 2003; Ye et al., 2003). In addition, we included experiments with and

without the β1-subunit, made in human embryonic kidney (HEK) cells (including tsA201),

Xenopus oocytes or CHO cells. The complete list of publications is given in Section 5.C.

All reported midpoints included in our analysis were specified as (1) the mean midpoint of

(in)activation, (2) the corresponding number of measurements (i.e., the number of cells) and

(3), the corresponding standard error of the mean (SEM). Using this data, we calculated

the standard deviation (SD) for each report and constructed a probability density function

(PDF) assuming that the measurements in each report followed a normal distribution. The

different PDFs were then multiplied by the number of measurements, discretized (so that

they resembled fine-grained histograms) and summed to create the combined PDFs seen in

Fig. 5.5.
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Figure 5.2: (A) A simple step protocol from −120mV to −20mV. (B) The resulting INacurrent, measured
in 21 cells. All data was leak-corrected and had the capacitance artefacts removed, leading to the initial flat
(zero) response. Data was time-shifted so that the peak occurred at t = 1ms. (C ) Time constants of fast
and slow inactivation, measured by fitting models to the data from each cell. (D) The correlation between
the time constants of fast and slow inactivation.

5.3 Results

5.3.1 The time constants of inactivation vary from cell to cell

Fig. 5.2.B shows the current measured in 21 cells, normalized to a peak current of −1, and

time-shifted to have its peak at t = 1ms. The initial downward slope and the time to peak

varies from cell to cell (see also the alternative views in Section 5.B.1). Once the peak

is reached, the current inactivates with a time course that varies from cell to cell. This

variability was quantified by fitting a model of INa, and the resulting time constants of fast

and slow inactivation are shown in Fig. 5.2.C. The distribution appears skewed, possibly

lognormal, with values ranging from about half to twice the most common value (or mode),

although the distribution for slow inactivation shows an outlier at around 4 times the mode.

5.3.1.1 Slow and fast inactivation are not independent

Fig. 5.2.D shows the relation between the slow and fast time constants. A moderate linear

correlation was found, with a Pearson correlation coefficient R = 0.64. Linear regression
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yielded τj ≈ −0.7 + 6.1τh. The small offset suggests that perhaps the relation between the

time constants is best expressed as the ratio τj/τh. Calculated per cell, this had a mean of

5.4 and a standard deviation of 1.9.

5.3.1.2 The time constants do not correlate with time since rupture

The time between membrane rupture and application of the step protocol varied between

the experiments. It is possible that slow changes in membrane potential occurred during

this time, e.g., due to a drifting liquid junction potential (Hanck and Sheets, 1992). Fig. 5.3

shows that the largest and smallest time constants were all measured around 500ms after

membrane rupture, and there is no clear correlation between time since rupture and the time

constants (Pearson correlation coefficient −0.039 for τh and time, 0.082 for τj and time). In

addition, we obtained recordings at a second point of time for a subset of cells but generally

saw only small differences between both measurements (see Section 5.B.1).
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Figure 5.3: The fast (τh) and slow (τj) time constants of inactivation, plotted against the time between
rupturing the membrane and performing the voltage step and current measurement. No clear relation
between the time and the time constants can be seen, as indicated by the almost horizontal regression lines.

5.3.1.3 The influence of noise is limited

We estimated time constants by searching for the values that gave the best fit to our data

using a pseudo-randomized approach (see Section 5.2.3). However, in the presence of noise,

this procedure may not return a unique result, as multiple parameter sets can be found

that will give different but almost equally good results, so that the ‘best fit’ chosen depends

on details of the algorithm and score function used, rather than the underlying biology.

To investigate the resulting noise-induced variability, we ran the analysis procedure several

times for each cell. Because our dataset contained 21 cells, we performed 21 fits per cell so

that the variability between cells and between fits could more easily be compared.

Fig. 5.4 shows the values obtained this way for each cell, alongside the values obtained by

a single fit to each cell. For most cells, the variability between repeated fits was far smaller

than the variability between cells. A numerical analysis supports this observation. Between

cells, τh had a mean of 1.0ms and a standard deviation of 0.36ms, while the mean and

standard deviation for τj were 5.7ms and 3.4ms respectively. The mean standard deviation
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Figure 5.4: Variability between cells exceeds variability in repeated fits. (A) Fast (top) and slow
(bottom) time constants of inactivation. The data points at position -1 each represent a single fit to a
different cell. The subsequent signs at position 1, 2, 3, etc. indicate the outcomes of repeated fits to cells 1,
2, 3, etc. (B) The standard deviation of fits to different cells (position -1) and of repeated fits to the same
data (positions 1, 2, 3, etc.).

observed in repeated fits was 0.21ms for τh and 0.99ms for τj . If we assume both standard

deviations (between cells and between fits) describe independent distributions, we can use

σ2
x+y = σ2

x + σ2
y to correct the inter-cell standard deviations for the fitting error to find

σh = 0.29ms and σj = 3.2ms.

5.3.1.4 Variability is not explained by temperature

Temperature was kept within a ±1.5°C bracket during the recordings. If temperature alone

induced the observed variability, this should cause the ratio between our highest and lowest

time constants to be 0.5−3/10 ≈ 1.23, for both slow and fast inactivation (Nagatomo et al.,

1998). However, the ratio seen in our data was closer to 4 for both, suggesting temperature

differences may partly, but not fully explain the observed variance.
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5.3.2 The midpoints of (in)activation vary from cell to cell
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Figure 5.5: (A) The midpoints of activation and inactivation reported in human myocyte studies on n
cells. All four studies show large variability, represented here as a normal curve with the reported mean and
standard deviation, and an area under the curve equal to the number of measured cells. (B) Distribution of
reported midpoints of activation and inactivation based on measurements in expression systems. The shaded
areas shows the summed distribution constructed from the reported data for n cells in m individual reports.
The thick dashed lines indicate a normal distribution with the corresponding mean and SD. The vertical grey
lines indicate the mean of the inactivation and activation distributions. (C ) Correlation between reported
midpoints of activation (Va) and inactivation (Vi), shown for studies that reported both. The white dots
indicate a reported pair of mean midpoints, with the corresponding ±2σ range indicated by the blue ellipses.
(D) A histogram of the difference between midpoints of activation and inactivation.

Fig. 5.5.A shows the distributions of Vi and Va obtained from studies with human myocytes,

one with ventricular myocytes and three with atrial samples. All studies show large vari-

ability in outcome, independent of the number of cells being used. Similar variation was

seen in the expression system data. In these reports, the standard deviation of Va ranged

from 0.4mV to 22mV, with a mean standard deviation of 4.5mV. Standard deviations of Vi

ranged from 0.13mV to 15mV, with a mean of 4.0mV. Assuming a normal distribution, this

indicates a spread of ±8mV (95% interval) is not uncommon in a single run of experiments.

5.3.2.1 The mean midpoints of (in)activation vary from study to study

Fig. 5.5.B shows the distribution of cellular Va and Vi constructed by summing the distribu-

tions from multiple studies. Both distributions show a spread of approximately ±20mV (95%

interval), indicating a much larger variance between studies than within studies. Even the

smaller peaks, which indicate the means of individual reports, occur over a range of ±20mV
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for both activation and inactivation. Both reconstructed distributions are reasonably well

approximated by a normal distribution.

5.3.2.2 The midpoint of activation and inactivation are not independent

Fig. 5.5.B shows the distributions for Vi and Va overlap. However, physiologically it seems

likely some distance between Vi and Va is required and that the two distributions are not

independent. Fig. 5.5.C shows the midpoint of inactivation plotted against the midpoint of

activation from the same study. Studies reporting only the midpoint of activation or only

inactivation had to be omitted for this figure, but no other filtering was performed, leading

to a total of 138 data points. A strong linear correlation is seen between the reported

midpoints of activation and inactivation (Pearson correlation coefficient R=0.82). Using

unweighted least-squares based linear regression, we found an offset of −42.06mV and a

slope of 1mV/mV (1.000046).

To separate the simultaneous variance of Va and Vi from their individual variance, we calcu-

lated the quantity Va − Vi (using only the means, not the reconstructed distributions) and

plotted its distribution in Fig. 5.5.D. Here, we found a standard deviation of 6.3mV (the

corresponding standard deviations for Va and Vi in this dataset were 8.8mV and 10.8mV

respectively). This indicates that, despite their strong linear relation, both midpoints also

fluctuate independently.

5.3.2.3 Cell-type and channel-variant do not explain study-to-study variability

Fig. 5.5.B incorporates data from all reports included in our analysis, and so contains data

from different expression systems, with and without the β1-subunit and with slightly dif-

ferent α-subunits. To remove these influences, Fig. 5.6.A was made using only data from

the largest subgroup: The a* α-subunit, co-expressed with β1-subunit in HEK cells. As can

be seen, this created a slight shift in the mean of the distribution, but did not significantly

reduce the observed spread. A quantitative view of the midpoint data is given in Table 5.2.

This table shows the mean Va and Vi for the combined data, as well as for various subgroups.

Here it can be seen that, while the standard deviation of Va is slightly smaller in the biggest

subgroup, the standard deviation of Vi is actually increased.

α-subunit : Fig. 5.6.B shows the data split by α-subunit. Papers that did not explicitly

mention the subunit used were excluded for this figure. Note that the number of reports

(m) and the number of cells (n) varies between the subgroups. The number of reports

for isoform b* in particular may be too low for a good estimate of the real distribution.

Interestingly, the means of the distributions do not differ strongly between subgroups. The

groups with the largest number of measurements show the largest spread, indicating that

either these cohorts are still too small to estimate the underlying distribution or that larger

groups are more prone to capture the effects of some underlying confounding factors.
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Figure 5.6: (A) Reconstructed distribution of midpoints of activation (red) and inactivation (blue) for
the largest subgroup (a* α-subunit, with β1-subunit, expressed in HEK cells). The shaded areas indicate
the summed distributions. The dashed lines indicate normal distributions with the equivalent mean and
standard deviation. The mean is indicated by the solid grey line. (B) The distributions split by α-subunit: a
(Q1077), b (Q1077del), a* (R1027Q) and b* (T559A; Q1077del). (C ) The distributions split by co-expression
of β1-subunit. (D) The distributions split by expression system.
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Table 5.2: Ranges of midpoint of activation (left) and inactivation (right). The subgroup mean midpoints
of activation and inactivation are indicated as µa and µi respectively, with the corresponding standard
deviations shown as σa and σi. The 2-sigma range around each mean is shown in the columns r2σ,a
(activation) and r2σ,i (inactivation). For each subgroup, the number of reports (m) and total number of
measurements (n) is given.

Activation Inactivation
µa σa r2σ,a m n µi σi r2σ,i m n

Combined -40.2 9.88 -59.9, -20.4 145 1795 -82.2 11.8 -106, -58.5 159 1912
HEK, a*, β1 -43.1 8.90 -60.9, -25.3 32 350 -85.1 13.3 -112, -58.4 32 336
Isoform a -38.9 6.79 -52.5, -25.4 20 189 -81.3 8.95 -99.2, -63.4 24 273
Isoform b -40.0 8.86 -57.7, -22.3 26 225 -82.1 8.74 -99.6, -64.6 27 286
Isoform a* -39.3 9.3 -58.0, -20.6 57 827 -80.8 13.4 -108, -53.9 63 813
Isoform b* -47.6 7.28 -62.1, -33.0 6 96 -90.3 9.38 -109, -71.5 6 64
Unknown -40.7 11.9 -64.5, -16.8 36 458 -84.1 11.6 -107, -60.9 39 476
With β1 -42.6 10.1 -62.9, -22.3 73 870 -83.6 12.7 -109, -58.2 76 894
Without β1 -37.9 9.04 -56.0, -19.8 72 925 -81.0 10.9 -103, -59.2 83 1018
HEK -41.4 9.76 -60.9, -21.8 123 1447 -84.5 11.1 -107, -62.2 131 1538
CHO -37.9 9.54 -57.0, -18.8 8 120 -77.6 10.9 -99.3, -55.9 9 130
Oocyte -33.7 7.90 -49.5, -17.9 14 228 -70.1 9.10 -88.9, -52.5 19 244

Inclusion of β1-subunit : Fig. 5.6.C shows the distributions of midpoints with and without

the β1-subunit. Papers that did not explicitly mention co-expression of the β1-subunit were

assumed to fall into the ‘no β1-subunit’ category. Here, the means seem to indicate a shift

to more negative potentials when the β1-subunit is co-expressed (−4.7mV for activation,

−2.6mV for inactivation, see Table 5.2). However, the minimum and maximum values

reported do not reinforce this pattern.

Expression system: Fig. 5.6.D shows the influence of the expression system on the measured

midpoints. The overwhelming majority of measurements were performed using HEK cells,

making the resulting distributions difficult to compare. However, it seems measurements in

HEK cells and CHO cells are comparable, whereas oocyte experiments show a shift towards

the positive.
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Figure 5.7: Simulations of the ventricular (top) and Purkinje (bottom) AP, incorporating variability in the
midpoints of activation and inactivation (left) and time constants of inactivation (right). In all cases, the
size of the initial upstroke and action potential duration were affected. In the Purkinje model, varying the
midpoint of inactivation and activation also affected the cells’ automaticity.

5.3.3 The observed variability affects the cellular AP

To investigate the effects of the observed variability on the cellular AP, we ran simulations

using a model of the human ventricular AP and the Purkinje AP. In a first simulation, we

varied the midpoints of activation and inactivation simultaneously (reflecting their strong

linear correlation) by −5mV to +5mV in 1mV steps. The results are shown in the left panels

of Fig. 5.7. In both models, this had a strong effect on the maximum upstroke velocity (even

doubling it in the ventricular model) and a smaller effect on the action potential duration

(APD). In the Purkinje cell model, moving the midpoints of (in)activation also lowered the

threshold for activation, leading to automaticity at higher frequencies, causing the cells to

depolarize ahead of the pacing signal.

In a second simulation, we varied both time constants of inactivation simultaneously from

0.5 to 2 times the original value in 11 logarithmically spaced steps. This had a much smaller

effect on the upstroke velocity in both models, but a greater effect on the APD. Purkinje

automaticity was unaffected by changes to the time constants. In all simulations, models

were pre-paced at 1s intervals for 1000 beats after each change to the parameters.
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5.4 Discussion

Despite the importance of including cell-to-cell variability in the parameters of computa-

tional models of the cardiomyocyte AP, data on such variability is scarce. In this study, we

showed new evidence of variability in the time constants of inactivation in INa and reviewed

existing evidence for variability in the midpoints of (in)activation. Using models of ventric-

ular and Purkinje AP, we showed that variability has an impact on the shape and duration

of the cellular AP.

5.4.1 Time constants of inactivation

We observed a variability between time constants of inactivation that is larger than can

be expected from experimental sources of error alone. Hanck and Sheets (1992) showed

the time between rupture of the cell membrane and performing the experiment could affect

the time constants measured in Purkinje cells. However, we saw no correlation of our

measurements with the time between rupture and experiment in our CHO cell measurements.

Similarly, Abriel et al. (2001) saw no correlation in HEK cell recordings. Noise in the

recordings was quantified using a repeated-fit strategy, and found to explain only a small

part of the observed variability. Temperature is known to affect measurements of time

constants of INa, but we saw a larger variance than would be predicted based on the results of

Nagatomo et al. (1998), while the data of Keller et al. (2005) would suggest an even smaller

temperature-based variation. Other factors, such as the internal and external solutions

used, were constant throughout our experiments. We note also that, near −20mV, the time

constants of inactivation are weakly voltage-dependent (see for example Beeler and Reuter,

1977), so that any factor leading to small transient changes in the potential across the

channel will not have a strong influence. Taken together, these findings suggest the origin

of the observed variability was not experimental error, but a fundamental feature of INa in

expression systems.

Table 5.3 shows that the standard deviations in our measurements closely match those of

previous studies in expression systems and isolated cardiomyocytes. The means too, are very

similar to those reported by Wan et al. (2001a) in HEK cells, but both fast and slow time

constants are approximately half the value found in myocytes by Sakakibara et al. (1992,

1993). While we cannot see the shape of the distribution of the time constants in these

publications, the size of the standard deviations suggests that our results are representative

for this type of experiment.

5.4.2 Midpoints of activation and inactivation

Some measure of cell-to-cell variability was seen in all reviewed reports of the midpoints of

(in)activation, with a mean standard deviation of approximately 4mV and a maximum of
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Table 5.3: Time constants of inactivation at −20mV.

µfast(τh) σfast µslow(τj) σslow
This study 1.0 0.36 5.7 3.4 CHO cells
Wan et al. (2001a) 0.79 0.34 5.1 1.6 HEK cells
Sakakibara et al. (1992) 2.6 0.40 12 2.8 Atrial myocytes
Sakakibara et al. (1993) 2.1 0.47 12 3.3 Ventricular myocytes

15mV for Vi and 22mV for Va. Assuming a normal distribution, this would lead to a range

of 16mV within two standard deviations of the mean, within the average study. Note that

systematic errors made within a single laboratory would not show up in this figure, nor would

factors such as α-subunit, β1-subunit co-expression, or differences in the internal solution

used. Again, temperature fluctuations could play a role. Nagatomo et al. (1998) recorded

a shift in the midpoint of activation of +0.43mV per degree Celsius, and a +0.47mV shift

for inactivation, but no such shifts were observed by Keller et al. (2005). Even assuming

a 0.5mV/°C shift and a bath temperature ranging over 10°C, this would only explain a

5mV difference in midpoints. Time since rupture may also have varied from cell to cell and

affected the recordings. In the Purkinje-cell recordings by Hanck and Sheets (1992), the

midpoints of (in)activation changed over time with a rate of approximately 0.5mV/min. If a

similar phenomenon occurs in expression systems, this could explain a part of the observed

variability, if the standard deviation in time-to-experiment was approximately 8min in the

average study (i.e., 32min within the 95% interval). However, Abriel et al. (2001) saw

no time-dependent shifts in their data measured in HEK cell experiments, which were the

predominant form of experiment in our data. In addition, our own data, though perhaps

not representative, showed a standard deviation of 3.5min in the time-to-experiment. This

suggests there is some measure of inherent variability in the midpoints of (in)activation.

The difference between studies extends over a much larger range, with reported mean mid-

points varying over a range of 40mV for both activation and inactivation (see Fig. 5.5.C).

In contrast to variability within studies, this variability may be partially explained by sys-

tematic differences between studies and laboratories. However, it is interesting to note that

factors such as α-subunit and β1-subunit expression only cause small differences in the mean.

Note also that some studies, for example the one by Tan et al. (2005) already report multiple

mean midpoints, to allow pairwise comparison with mutated currents made under similar

seasonal conditions. However, the difference seen between the midpoints in the study by Tan

et al. was at most 3mV for activation, and 7mV for inactivation. Further work is needed to

clarify the origins of these large inter-study differences.

5.4.3 Correlation between kinetical parameters

Fig. 5.5.C shows a striking linear correlation between Vi and Va. A moderate correlation

between the fast and slow time constants of inactivation was also found. Such correlations

could be caused by some hidden variable affecting both parameters simultaneously. This
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could be an experimental error, but is also consistent with the idea of regulation of channel

function. However, it is unclear how this would arise, especially in expression systems that

do not natively express INa.

5.4.4 Implications for cardiac modeling

Our results show that variability in the kinetical parameters of INa exists and has an effect

on the AP. For computational studies that include variability in AP model parameters,

perhaps the most important finding is that parameters are correlated. This implies that

variability in the different parameters cannot be simulated by sampling from independent

distributions, but that the covariance of the different model parameters must be taken into

account. Alternatively, relations such as τj/τh ≈ 5 and Va − Vi ≈ 40mV can be exploited

to reformulate the parameters in terms of independent random variables. For example,

assuming normally distributed midpoints of activation, Va = X1, Vi = Va + 40 +X2, where

X1 and X2 are variables drawn from a normal distribution. Similarly, assuming lognormally

distributed time constants, τh = Y1, τj = 5 · τh · Y2 where Y1 and Y2 are drawn from a

lognormal distribution. A further simplification was made in Section 5.3.3, where we set

X2 = 0 and Y2 = 0. A physiological meaning can be attributed to these variables: in our

example X1 represents variability in the current’s steady-state voltage dependence, while

X2 represents variability in the ‘window’ that gives rise to the ‘window’ current.

5.4.5 Implications for reporting of cell-electrophysiological data

The recognition of cell-to-cell variability in channel kinetics has a direct impact on any

study investigating INa channelopathies, and may be a factor explaining phenomena such as

ectopic beats in some, but not all, areas of the Purkinje system (for example via increased

automaticity such as seen in Section 5.3.3). This has important implications for the way

cell-electrophysiological results are reported. For instance, instead of only giving means and

standard errors of the mean, data points corresponding to each individual cell should be

given (see also Drummond and Vowler, 2011). Ideally, the data points should be labeled

per cell so that correlations between the different parameters can be established. Most

importantly, based on this study, it appears the variability in kinetical parameters is more

than just noise, and could be a relevant physiological parameter.

5.4.6 Limitations

Future work could focus on increasing the sample size of the experiments, which would

improve the accuracy of the results. Such a dataset might be obtainable with automated

patch-clamp experiments, and could be performed cheaply if run as a baseline test done

before a secondary experiment. While we chose to focus on INa, one of the major cardiac

ionic currents, similar investigations into all other currents are needed to gain a full picture
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of variability in the processees underlying the cardiac cellular AP.

We simulated the effects of INa variability on single cells. In tissue, the kinetics of INa are

also likely to affect the conduction velocity and the safety factor of propagation. However,

this will depend strongly on whether the coupled cells differ from each other, or if perhaps

their shared environment and electrotonic coupling will cause them to function in a similar

way.

The presented literature review was based entirely on reported means and standard devia-

tions (calculated from reported standard errors of the mean). Future work could focus on

obtaining data from individual cells, which will allow cell-to-cell variability to be reviewed

more directly. Since the dataset contains many publications by the same groups, we also

cannot exclude the possibility that some cells appear in the dataset more than once, so that

the real number of cells is smaller than reported and some points in the distribution are

over-represented. It is also possible there are still other confounding factors causing the

observed variability in the measured results, that do not occur naturally on the same scale.

For example, while the CHO cells we tested were all treated the same way, it is possible that

naturally arising differences in stretch affected the ion channel characteristics (Morris and

Juranka, 2007). Finally, the exact α-subunit used in a study is not always easy to deter-

mine, as many papers do not list an accession number or were written before the existence

of variation between available plasmids was widely known.

5.4.7 Comparison to previous work

A study by Pathmanathan et al. (2015) fit multiple models of INa to data on the steady-state

of inactivation in canine datasets, and investigated the effects of the different inactivation

curves on the single-cell level. This work focused on the mathematical methodology of

incorporating variability in INa, which contrasts with our focus on identifiability and possible

experimental origins of variance. Interestingly, Pathmanathan et al. used two datasets from

the same lab but made at different times, and found differences between the two datasets.

This matches well with the large inter-study differences seen in our pooled midpoint data,

and underscores the need to perform large studies of variability over longer periods of time.

Table 5.2 shows the mean midpoints of activation and inactivation measured in CHO cells

occurred at higher potentials than in HEK cells (but note the different sizes of the datasets).

This is consistent with earlier findings by Watanabe et al. (2011b) for INa and Fernandez

et al. (2003) for Kv3.3. The collected data on midpoints also allows us to investigate the

influence of factors such as the expression system used and co-expression of the β1-subunit.

As there is no consistency in the size or direction of the shifts reported by individual studies

investigating β1-subunit (see the table in Section 5.B.3) this may provide a useful ‘consensus’

view of its effects.
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5.5 Conclusion

The fast and slow time constants of INa inactivation show variability that can not be ex-

plained by experimental error alone. A review of data reported in the literature suggests this

is also the case for the midpoints of (in)activation. Simulations of Purkinje and ventricular

electrophysiology show the observed variability has a notable effect on the cellular AP, and

may lead to increased automaticity in isolated Purkinje cells. A moderate corelation was seen

between the fast and slow time constants of inactivation, and a strong correlation between

midpoint of activation and inactivation was observed. This suggests simulations incorpo-

rating variability in kinetical parameters should not vary these parameters independently

but adapt their modeling strategy to incorporate these correlations. Finally, the recognition

of cell-to-cell variability as a biological feature implies it should receive increased attention

as a possible arrhythmogenic influence. Consequently, electrophysiological data should be

reported in a manner that highlights where cell-to-cell variability and correlations between

parameters occur.
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5.A Extended methods

The complete equations used to model INa are given below.

INa(t) = m3 · h · j · g · (V − E) (5.6)

dm/dt = (m∞ −m)/τi (5.7)

dh/dt = (h∞ − h)/τh (5.8)

dj/dt = (j∞ − j)/τj (5.9)

dV/dt = (Vcmd − V )/τc (5.10)

Time constants and steady-states (for x ∈ {m,h, j}):

τx = 1/(αx + βx) (5.11)

x∞ = αx/(αx + βx) (5.12)

and

αm = (V + p1)/(1− exp(−p2 ∗ (V + p1))) (5.13)

βm = exp(−p4 ∗ (V + p3)) (5.14)

αh = exp(−p6 ∗ (V + p5)) (5.15)

βh = p9/(1 + exp(−p8 ∗ (V + p7))) (5.16)

αj = exp(−p11 ∗ (V + p10))/(1 + exp(−p13 ∗ (V + p12))) (5.17)

βj = p16/(1 + exp(−p15 ∗ (V + p14))) (5.18)

The parameters to be identified were p1, p2, ..., p16, g, τc. We used E = 50mV, as determined

by the internal and external solutions.

Note that for a fixed membrane potential, all time constants and steady-states are constants,

so that p1, p2, ..., p16 can be dropped in favor of τm, τh, τj ,m∞, h∞, j∞.

5.A.1 Time constants are identifiable

If a model can be made to fit the same data in different ways (i.e., if it gives the same result

with different parameter values) it is said to be unidentifiable. In such a case, variability

in the parameters obtained by fitting a model can not be used to show variability in the

underlying process. Walch and Eisenberg (2015) performed a detailed analysis of the iden-

tifiability of Hodgkin-Huxley style models, such as the one given above and used in this

study. For voltage-step protocols (with constant voltage steps) and long noise-free current

recordings, they found that time constants can be uniquely identified but steady-state values

are fundamentally unidentifiable.
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5.A.2 Membrane charging interferes with activation

When a voltage change is applied to a cell, the membrane potential does not change instantly

but requires a short charging time, with a duration dependent on the membrane capacitance

and access resistance. For INa, which can activate and inactivate in well under 5 milliseconds,

this is an important effect. Most patch-clamp amplifiers contain compensation circuitry that

temporarily injects extra current in an attempt to shorten the membrane charging time

(Sigworth, 1995; Sherman et al., 1999). However, since the membrane capacitance varies

between cells and the exact amount of compensation used is set using analog controls, this

may introduce variability in the recordings.

If no compensation is used, membrane charging can be modeled as a simple capacitor charg-

ing circuit. This means that an updated model including membrane charging should be

able to recreate currents recorded without compensation exactly. Unfortunately, not using

compensation would lead to longer capacitance artefacts resulting in an unacceptable loss

of signal. We therefore measured the compensated and uncompensated behavior of our am-

plifier (Axopatch 200B) to check if compensated behavior could still be approximated well

by a simple charging capacitor circuit. To this end, we constructed the model cell shown in

Fig. 5.8. It consists of two 22MΩ resistors which represent the access (pipette) resistance

encountered in a normal experiment and a single 500MΩ resistor that represents the mem-

brane resistance. A 22pF capacitor is included as a substitute for membrane capacitance.

These values are consistent with those given in Sigworth (1995). To measure the model cell’s

charging time, a patch-clamp amplifier in voltage-clamp mode was attached to terminal A1

and used to perform a voltage step. A second patch-clamp amplifier in a voltage-measuring

mode was then attached at terminal A2 and used to measure the potential over the resistor

representing the membrane.

A1
A2

22MΩ

22MΩ

22pF

500MΩ

Figure 5.8: The model cell used to investigate the delayed changing of the membrane potential following a
voltage step, with and without amplifier compensation.

Fig. 5.9 shows the potential over the model cell during a step from 0mV to 10mV. The

recordings reveal a few milliseconds delay at the start of each step, followed by a quick jump

in voltage, and finally settling into a simple exponential form. The potential then converges

to something very near the desired potential, but not exactly, due to the voltage drop across

the series or access resistance. With series resistance compensation enabled, this voltage

drop is minimized and the charging process is accelerated. In the traces on the right panel

of Fig. 5.9 the voltage drop has been artificially removed by rescaling the potentials. In this
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case, we found the process could be well approximated as

dV

dt
=
Vcmd(t− t0)− V

τc
(5.19)

where Vcmd(t) is the desired command potential, V is the actual membrane potential, τc is

a time constant dependent on the series resistance, membrane capacitance and amount of

compensation, and t0 is a remaining, unexplained latency. The quality of fit is shown in the

right panel of Fig. 5.9.
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Figure 5.9: (Left) Membrane charging behavior measured in a model cell, during ‘patch-clamp experiments’
with 0%, 60% and 80% compensation. (Right) The charging behavior of a model cell can be modeled as
an exponential convergence to the command potential and a slight delay. The thick, shadowed lines are the
original traces from the left panel, the thin dashed lines are the fitted curves.

We found τc ≈ 0.70ms uncompensated, τc ≈ 0.35ms with 60% compensation and τc ≈ 0.26ms

with 80% compensation. By comparison, the values given by Beeler and Reuter’s model for

INa at −20mV are τm ≈ 0.032ms, τh ≈ 1.1ms and τj ≈ 4.3ms. This indicates that, even

with good compensation, membrane charging will strongly interfere with the activation

process, making τm more difficult to identify. With ‘prediction’ enabled (Sherman-Gold and

Maertz, 2012), the situation is slightly more complex, as is shown in Fig. 5.10. However,

for moderate prediction, the charging process is still reasonably well approximated by an

exponential charging curve.
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Figure 5.10: Uncompensated membrane charging (black) and charging with moderate (blue) or strong (red)
compensation (left) or compensation/prediction (right).

To estimate the effects of membrane charging on INa, we updated our model of INa to include
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a slowly charging membrane with τc ≈ 0.3ms. To reduce the number of extra parameters,

the small latency t0 seen in the model cell experiments was not included in the updated

model. Because τc is not voltage-dependent we treated it as a single-valued parameter to

be determined by the fitting procedure, and added it to the parameter vector p. With

this updated model, we could simulate the effects of the membrane charging time on the

fast sodium current. This is shown in Fig. 5.11 (left panel), which was made using the

default model parameters given by Beeler and Reuter (for similar experiments using real

cells, see Sherman et al., 1999). In the right panel, we show the ideal trace (i.e., with an

instantaneously changing V ) with a small time delay. This shows that the decaying part

of the current is relatively unaffected by the slow membrane charging. By contrast, the

time-to-peak, initial downward slope and peak current are all strongly affected.
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Figure 5.11: (Left) Simulated INa with ideal, instantaneous changes in membrane potential (blue, solid
line) and with a realistic, series resistance compensated charging time (green, dashed). The charging time
affects both the timing and the size of the peak. (Right) Time-shifting the ideal trace to overlap with the
realistic trace reveals that the decaying phase is delayed, but otherwise unchanged (black dotted line).

The membrane charging time is not just an experimental issue, it also changes the iden-

tifiability of the model, making it more complex than the situation analyzed by Walch

and Eisenberg. In their analysis, a single voltage step is considered so that V is piecewise

constant, and the steady-state values and time constants for each V are single-valued pa-

rameters. Different step potentials V can then be applied and the appropriate constants

worked out separately for each potential. Taking membrane charging time into account

means adding a new variable to the model, but also means that, to accurately simulate

a step from −120mV to −20mV, all values of the time constants and steady state values

between −120mV and −20mV need to be identified simultaneously. However, provided the

membrane charging time is short enough, only the activation process should be affected by

this issue, as can be seen in the right panel of Fig. 5.11. To accommodate the changing V

during activation, we used the full voltage-dependent parameters when fitting the model,

allowing it to match the start of the experimental recording, even if in a non-unique way.

Once the membrane is charged, the potential can once again be regarded as fixed. Based

on the foregoing simulations and analysis we hypothesized that it should still be possible to
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find reasonably accurate values for the time constants of inactivation. Similarly, the inac-

curacy of dropping t0 and not modeling the compensation/prediction curve will not affect

inactivation measurements as long as the initial delay can be accommodated.

5.A.3 Repeated-fit experiments confirm our analysis

The top panel of Fig. 5.12 shows the variability observed between cells (i.e., single fits to

different cells). It shows low variability in the steady-state values, but high variability for all

time constants. The lower panel shows a similar graph for the variability observed between

repeated fits to the same data from a representative cell (‘cell 2’). Here it can be seen that,

for the time constant of activation, the variability between repeated fits is similar to that

observed between cells, so that no strong claims about inter-cell variability in activation

can be made. Similarly, the variability observed in the determined steady-states can be

explained as experimental error alone. By contrast, for the time constants of inactivation

the variability between repeated fits is much lower than the inter-cell variability.
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Figure 5.12: (Top) The variability in the parameters obtained by fitting our model to each of the 23 cells.
For each parameter we show the log2 of its distance from the mean. The steady state parameters (m∞, h∞
and j∞) were shifted by 0.5 to avoid dividing by zero, since h∞ ≈ j∞ ≈ 0. (Bottom) Variability in the
parameters obtained by repeatedly fitting our model to the data from a single recording in cell 2 (data is
shown from 23 re-runs).
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5.B Additional results

5.B.1 Time-constant experiments

Fig. 5.13 shows alternative views of the INa measurements from Fig. 5.2. As can be seen, the

maximum conductance varies widely, due to cell size, transfection success rate and differences

in the kinetics of INa (as evinced by the different shapes of the curves, which are not simple

linear multiples of each other).
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Figure 5.13: Alternative views of the single voltage-step experiments. (Left) The (pre-processed) data,
without time-shifting or normalization. (Middle) The same data, time-shifted so that each peak occurs at
t = 1ms. (Right) The same data, normalized to a peak-height of 1, without time-shifting.

Fig. 5.14 shows an example of the quality of fit obtained with the model including charging

time.
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Figure 5.14: An example of the quality of fit obtained with the model including charging time. The raw
data is shown in shaded blue. The model fit is shown as the solid green line. The dashed red lines indicates
the part of the simulation that was not taken into account when calculating the score function. The inset
gives a closer view of the same data during the initial downslope.

For 15 cells, we had two recordings made with a protocol containing a step from −120mV

to −20mV. Fig. 5.15 shows the mean time constant determined using repeated fits to the

recording from the first and second protocol for each of these cells. As can be seen, with a

few exceptions, the cell behavior stayed constant during the experiment. Where values do

vary, the direction of the change differs from cell to cell. This is inconsistent with the idea of
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a slowly changing membrane potential due to flow of charged particles between the pipette

and the cell, which would result in changes of a similar sign. On the basis of this figure, we

also considered discarding the three cells that appear as ‘outliers’ in the top left of the left

panel. However, the recordings showed no obvious deficiencies in leak or access resistance

so that no objective criterion for rejecting them could be found. Removing these cells had

a negligible effect on the corrected inter-cell standard deviations given in Section 5.3.1.3.
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Figure 5.15: Changes in the time constants (determined as the mean constant using repeated fits) over time
in 15 cells. Two time points are shown for each cell, connected by a line. Colors and markers are consistent
between the left panel (fast inactivation) and the right (slow inactivation).

5.B.2 Midpoints of (in)activation in the biggest subgroup

Fig. 5.16.A shows the correlation between midpoint of activation and midpoint of inacti-

vation for experiments in the largest subgroup. Regression coefficients were very similar

to those found in the full dataset, with a slope of 1.13mV/mV and an offset of −38.3mV.

The figure contains 28 points and has a slightly higher Pearson correlation coefficient than

the full dataset (R=0.89). A distribution similar to Fig. 5.5.D but for the largest subgroup

is shown in Fig. 5.16.B. Although there are fewer data points in these figures, the overall

pattern is very similar.
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Figure 5.16: (A) Correlation between Va and Vi in the largest subgroup. White dots indicate mean
midpoints, blue ellipses indicate the corresponding ±2σ range (B) A histogram of Va − Vi in the biggest
subgroup.
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5.B.3 β1-subunit coexpression

Table 5.4 shows the results from studies measuring midpoints of (in)activation of INa with

and without β1-subunit. The table shows a variety of signs and magnitudes of reported

shifts.

Table 5.4: Studies reporting midpoint of activation or inactivation with and without β1-subunit.

Midpoint of: Activation [mV] Inactivation [mV]
-β1 +β1 Shift -β1 +β1 Shift α Cell type

An et al. (1998) -70.2 -58.7 +11.5 a* HEK
Bezzina et al. (2003) -35.2 -39.9 -4.7 -78.3 -85.2 -6.9 a* Oocyte
Calloe et al. (2011) -34.4 -31.4 +3.0 -71.2 -77.7 -6.5 b CHO
Groenewegen et al. (2003b) -40.6 -38.63 +1.97 -82.75 -75 +7.75 a* Oocyte
Wei et al. (1999) -74.1 -63.2 +10.9 a* Oocyte
Wan et al. (2000) -33.4 -33.8 -0.4 -84.8 -79.3 +5.5 b* Oocyte

5.C Studies used in the literature review

Table 5.5 shows all midpoints of (in)activation used in this study, along with the standard

deviation (σ), number of cells (n) and the cell-type, α-subunit, and presence of β-subunit.

Table 5.5: Midpoints of (in)activation

Publication Va σa na Vi σi ni Cell α β1

Abe et al. (2014) -50.5 5.81 15 -84.1 5.03 15 HEK b no

Abriel et al. (2000) -66.2 1.8 4 HEK a* yes

Abriel et al. (2001) -21.5 0.735 6 -65.2 0.721 13 HEK a* yes

Abriel et al. (2001) -23.3 2.08 3 -63.3 0.894 5 HEK a* yes

Abriel et al. (2001) -24.6 1.56 3 -63.7 0.671 5 HEK a* yes

Abriel et al. (2001) -25.5 1.56 3 -64.3 0.671 5 HEK a* yes

Abriel et al. (2001) -26 1.91 3 -64.5 0.671 5 HEK a* yes

Aiba et al. (2014) -43.3 4.76 7 -80.1 4.8 9 HEK ? yes

Akai et al. (2000) -44.1 0.9 9 -80.8 6.3 9 HEK a* yes

Albert et al. (2008) -28.5 1.5 9 -60.8 0.959 23 Ooc. a* yes

Amin et al. (2005) -36.7 6.96 10 -83.3 5.69 10 HEK ? yes

An et al. (1998) -70.2 5.36 17 HEK a* no

An et al. (1998) -58.7 4.8 16 HEK a* yes

Bankston et al. (2007a) -24.9 1.9 7 -61.3 3.67 5 HEK ? yes

Bankston et al. (2007b) -24.8 4.69 13 -71.2 2.7 9 HEK a* yes

Baroudi et al. (2000) -101 5.63 22 HEK a* no

Baroudi et al. (2000) -67.9 1.7 8 Ooc. a* no

Baroudi and Chahine (2000) -47.2 8.15 23 -93.2 5.18 21 HEK a* yes

Baroudi et al. (2001) -47.2 4.02 5 -92.5 2.26 4 HEK a* yes

Bébarová et al. (2008) -31.8 4.8 16 -66.6 3.1 15 CHO a no

Beckermann et al. (2014) -37.3 2.24 14 -86 1.33 11 HEK ? yes

Beyder et al. (2010) -33 22 6 HEK b no

Beyder et al. (2014) -58.2 3 9 -95.5 3.9 9 HEK b no

Bezzina et al. (2003) -35.2 14.7 8 -78.3 13 8 Ooc. a* no
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Publication Va σa na Vi σi ni Cell α β1

Bezzina et al. (2003) -39.9 8.6 4 -85.2 7.6 4 Ooc. a* yes

Calloe et al. (2011) -34.4 0.566 8 -71.2 0.9 9 CHO b no

Calloe et al. (2011) -31.4 1.26 10 -77.7 1.8 9 CHO b yes

Calloe et al. (2013) -32.7 0.529 7 -69.5 0.529 7 CHO b no

Casini et al. (2007) -38.6 3.87 15 -88 7.57 13 HEK a* yes

Chang et al. (2004) -58.4 4.8 9 -107 2.7 9 HEK ? yes

Chen et al. (2016) -45.7 2.62 14 -80.7 4.5 12 HEK ? yes

Cheng et al. (2010) -32.2 3.2 16 -79.7 3.71 17 HEK b no

Cheng et al. (2010) -31.1 3.43 6 -70.6 3.11 8 HEK a no

Cheng et al. (2010) -34.9 3.6 9 -72 2.65 11 HEK b no

Cheng et al. (2010) -34.9 2.01 5 -72.9 2.65 7 HEK a no

Cheng et al. (2011) -37.6 3.39 8 -76.1 4.5 7 HEK b no

Cheng et al. (2011) -39.6 5.59 5 -74.6 4.23 7 HEK a no

Clatot et al. (2012a) -44.3 6.6 17 -81.7 1.9 10 HEK b* no

Cordeiro et al. (2006) -49.3 1.05 15 -93 0.538 10 HEK b* yes

Crotti et al. (2012) -50.8 10.3 33 -92.5 4.21 17 HEK ? yes

Deschênes et al. (2000) -53.6 4.47 5 -97.4 2.69 6 HEK a* yes

Detta et al. (2014) -40.3 1.53 11 HEK a* yes

Ellinor et al. (2008) -21.2 2.32 15 -61.8 0.825 17 Ooc. a* yes

Ge et al. (2008) -35.5 5.05 13 -78.7 6.63 26 HEK a yes

Glaaser et al. (2012) -69.1 9.9 9 HEK ? no

Gosselin-Badaroudine et al. (2012) -55.3 2.28 7 -100 2.04 7 Ooc. b yes

Groenewegen et al. (2003b) -40.6 6.08 15 -82.8 6.62 15 Ooc. a* no

Groenewegen et al. (2003b) -38.6 8.77 8 -75 6.36 8 Ooc. a* yes

Groenewegen et al. (2003a) -37.3 6.22 8 -78 4.05 7 Ooc. a* no

Gütter et al. (2013) -35.1 3.75 88 -84.3 4.95 68 HEK a* no

Gütter et al. (2013) -33.5 3.62 82 -71.2 3.7 28 Ooc. a* no

Gui et al. (2010a) -34.7 3.36 23 -81.4 3.43 24 HEK a* no

Gui et al. (2010a) -34.2 2.81 22 -67.7 2.78 31 Ooc. a* no

Gui et al. (2010b) -33.8 2.32 11 -80.3 3.12 12 HEK a* no

Hayashi et al. (2015) -43.8 6.8 16 -80 2.4 16 CHO ? yes

Holst et al. (2009) -30.4 2.24 14 -82 4.69 13 HEK ? no

Hoshi et al. (2014) -79.5 2.55 18 HEK a no

Hsueh et al. (2009) -42.6 2.56 10 -84.3 3.79 10 HEK a yes

Hu et al. (2007) -50.8 1.03 33 -92.5 0.412 17 HEK b* yes

Hu et al. (2010) -92.5 4.21 17 HEK ? yes

Hu et al. (2014) -92.5 3.85 22 HEK b yes

Hu et al. (2015) -41 3.9 9 -80 6.97 19 HEK b no

Hu et al. (2015) -41 8.65 13 -80 9.35 14 HEK a no

Huang et al. (2006) -59.9 2.55 8 -108 5.09 8 HEK ? no

Huang et al. (2009) -50.3 6.18 9 -100 4.02 9 HEK a* yes

Itoh et al. (2005a) -39.9 7.5 25 HEK a* yes

Itoh et al. (2005b) -40.6 6.42 21 HEK a* yes

Itoh et al. (2007) -90.9 3.3 9 HEK a* yes

Juang et al. (2014) -36.3 0.4 4 -86.4 1.4 4 HEK a yes

Kato et al. (2014) -54.4 8.91 18 -83.8 9.62 21 CHO a* yes

Keller et al. (2005) -41 6.9 9 -77.1 3.58 5 HEK b* yes

Keller et al. (2006) -60.1 4.49 10 -104 1.81 8 HEK ? yes

Li et al. (2009) -56.6 4.21 6 -104 3.87 6 HEK ? no
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Lin et al. (2008) -54.6 1.96 7 -99 2.46 8 HEK a* yes

Liu et al. (2002) -73.3 6.2 4 HEK a* yes

Liu et al. (2003) -50.4 4.38 11 -76.4 4.8 16 HEK ? no

Liu et al. (2005) -97 4.2 9 CHO b no

Lupoglazoff et al. (2001) -47.2 7.85 19 -92.5 3.65 11 HEK a* yes

Makita et al. (1998) -68.7 4.31 11 Ooc. a* no

Makita et al. (2002) -47.2 3.97 13 -91 4.69 13 HEK a* yes

Makita et al. (2005) -48.1 3.92 19 -86.6 3.71 17 HEK ? yes

Makita et al. (2008) -49.7 6.22 32 -86.8 5.5 25 HEK ? yes

Makiyama et al. (2008) -43.6 3.79 23 -78.1 4.41 22 HEK a* yes

Marangoni et al. (2011) -44 8 16 -92 7.21 13 HEK ? yes

Medeiros-Domingo et al. (2007) -43.8 2.86 5 -78.8 3.51 10 HEK ? no

Medeiros-Domingo et al. (2009) -38.6 3.49 15 -76 5.23 19 HEK b no

Mohler et al. (2004) -41.8 2.65 7 -68.9 1.16 15 HEK a* yes

Mok et al. (2003) -47.2 5.6 4 -91.1 0.693 3 HEK ? yes

Moreau et al. (2013) -47.9 4.33 13 -92 4.69 13 HEK a* yes

Murphy et al. (2012) -50.9 10.3 20 -102 6.32 10 HEK a* no

Nakajima et al. (2015) -38.7 3.1 15 -85.9 2.47 17 HEK b yes

Neu et al. (2010) -50.9 5.89 12 -90.9 4.2 9 HEK a* yes

Nguyen et al. (2008) -47.8 1.58 10 -89.4 2.53 10 HEK a* yes

O’Leary et al. (2002) -78.6 0.134 5 Ooc. ? no

Olesen et al. (2012) -27.9 6.1 22 -85.6 4.5 25 HEK ? no

Otagiri et al. (2008) -44.4 4.26 37 -88.3 4.87 37 HEK ? yes

Pfahnl et al. (2007) -50 1.55 15 -98 8.52 15 HEK b* no

Poelzing et al. (2006) HEK a no

Rivolta et al. (2001) -23.3 2.24 5 -62.8 3.12 12 HEK ? yes

Rook et al. (1999) -35.9 0.949 10 -77.4 0.316 10 Ooc. a* no

Rossenbacker et al. (2004) -24.1 0.894 5 -70.9 1.4 4 HEK ? yes

Ruan et al. (2007) -23.2 1.92 5 -62.5 2.15 10 HEK ? yes

Ruan et al. (2010) -23.1 1.77 9 -67.7 3.01 12 HEK ? yes

Saber et al. (2015) -24 4.9 6 -66 4.9 6 HEK ? yes

Samani et al. (2009) -36 5.03 7 -89.9 5.4 9 HEK b yes

Sarhan et al. (2009) -109 1.85 7 HEK a no

Shinlapawittayatorn et al. (2011b) -91.9 4.5 7 HEK a no

Shinlapawittayatorn et al. (2011a) -91.2 2.77 12 HEK a no

Shirai et al. (2002) -49.9 2.38 7 -94.9 6.37 6 HEK a* no

Shuraih et al. (2007) -43.4 0.794 7 -90.7 0.265 7 HEK b yes

Shy et al. (2014) -29.6 3.68 8 -76.9 6.96 10 HEK ? no

Smits et al. (2005a) -42.6 4.2 9 -89.4 3.6 9 HEK a* yes

Smits et al. (2005b) -43.7 9 9 -98.8 7.57 13 HEK a* yes

Sottas et al. (2013) -29.8 1.99 11 -72.2 1.66 11 HEK ? yes

Splawski et al. (2002) -26.6 3.68 8 HEK ? no

Surber et al. (2008) -31.5 7.27 27 -67.6 3.7 28 Ooc. a* no

Surber et al. (2008) -42.2 3.37 14 -79.4 3.43 6 HEK a* no

Swan et al. (2014) -28 3.39 8 -75.8 4.9 6 HEK b yes

Tan et al. (2001) -48.6 3.17 7 -92 4.5 7 HEK ? yes

Tan et al. (2002) -40.3 2.88 13 -93.5 4.33 13 HEK a* no

Tan et al. (2005) -39 4.9 6 -75 5.66 8 HEK b no

Tan et al. (2005) -38 4.9 6 -75 6 9 HEK b no

105



Variability in the dynamical properties of human cardiac INa

Publication Va σa na Vi σi ni Cell α β1

Tan et al. (2005) -42 2.91 5 -81 4.2 9 HEK b no

Tan et al. (2005) -41 3.39 8 -79 5.31 11 HEK b no

Tan et al. (2005) -42 2.55 8 -79 4.2 9 HEK b no

Tan et al. (2005) -40 9.55 6 -78 7.83 5 HEK b no

Tan et al. (2005) -40 1.39 3 -81 4.68 3 HEK b no

Tan et al. (2005) -39 4 4 -75 5.66 8 HEK a no

Tan et al. (2005) -39 4 4 -78 2.83 8 HEK a no

Tan et al. (2005) -42 3.96 8 -82 4.85 12 HEK a no

Tan et al. (2005) -40 8.49 18 -79 8.49 18 HEK a no

Tan et al. (2005) -43 2 4 -82 6.2 4 HEK a no

Tan et al. (2005) -42 3.39 8 -82 3.6 9 HEK a no

Tan et al. (2005) -40 5.66 8 -80 4.8 9 HEK a no

Tan et al. (2005) -41 1.8 4 -80 1.2 4 HEK a no

Tan et al. (2006) -46.9 3.39 8 -81.8 3.68 8 HEK b no

Tan et al. (2006) -44.1 5.06 10 -80 4.74 10 HEK a no

Tarradas et al. (2013) -32 1.27 18 -84.9 2.85 10 HEK a* no

Tester et al. (2010) -42 4 4 -72 2.24 5 HEK b no

Tsurugi et al. (2009) -39.6 3.39 8 -88 2.55 8 HEK ? no

Valdivia et al. (2004) -42 7.75 15 -84.3 4.47 20 HEK b no

Vatta et al. (2002a) -89.5 0.49 6 HEK ? no

Vatta et al. (2002b) -24.9 1.13 8 -68.4 0.332 11 Ooc. ? no

Viswanathan et al. (2003) -40.7 4.64 11 -85 3.98 11 HEK a* yes

Wang et al. (1996) -43.2 6.85 13 -99.6 2.92 11 HEK a* no

Wang et al. (2002) -47.7 4 16 -101 6.1 19 HEK a* yes

Wang et al. (2007a) -44.3 2.24 14 -89.3 4.4 16 HEK a* yes

Wang et al. (2007b) -46 6.93 5 HEK a* yes

Wang et al. (2008) -44.3 2.24 14 -89.3 4.4 16 HEK a* yes

Wang et al. (2011) -93.9 2.65 11 HEK ? no

Wang et al. (2015) -40.9 0.63 9 -72.7 2.49 7 HEK a* no

Wang et al. (2016) -44.5 4.8 36 -93.5 4.08 34 HEK ? yes

Watanabe et al. (2011c) -35.4 3 25 -84.5 4.9 24 CHO a no

Watanabe et al. (2011c) -47.7 4.4 16 -89.4 3.05 19 HEK a no

Wedekind et al. (2001) -42.8 7.67 7 -98.1 5.03 7 HEK a* yes

Wehrens et al. (2003) -29.8 1.13 8 -64 2.26 8 HEK ? yes

Wei et al. (1999) -63.2 4.11 10 Ooc. a* yes

Wei et al. (1999) -74.1 2.38 7 Ooc. a* no

Winkel et al. (2012) -26 10.3 17 -84.6 7.2 16 HEK ? no

Yang et al. (2002) -54.3 9.26 7 -98.3 0.794 7 HEK a* yes

Ye et al. (2003) -44 15.8 10 -95 14.4 9 HEK a* no

Ye et al. (2003) -40 18.5 7 -86 15.3 7 HEK b* no

Yokoi et al. (2005) -49.8 3.68 8 -88.6 3 9 HEK ? no

Young and Caldwell (2005) -32.7 5.81 20 -66 8.94 20 CHO a* no

Zeng et al. (2013) -34.5 4.24 8 -81.1 4.69 13 HEK a yes

Zhang et al. (2008) -33.1 2.24 5 -64.5 0.98 6 Ooc. a* no

Zhang et al. (2015) -28.1 5.03 15 HEK ? no
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CHAPTER 6

Predicting changes to INa from missense

mutations in SCN5A

Abstract

We investigated the possibility of predicting changes in INa resulting from single nucleotide

missense mutations in the underlying α-subunit channel gene SCN5A. An exhaustive list of

nonsynonymous missense SCN5A mutations was compiled and annotated with the reported

qualitative and quantitative changes to whole-cell INa. Specifically, we focused on changes

to activation, inactivation, the late component of inactivation, and mutations that caused a

complete absence of current. Mutations were characterized by their position on the gene and

the difference in physical properties of the old and new amino acid (e.g., the difference in

the acid’s charge or hydrophobicity). Clinically investigated mutations were found to occur

with uneven density across the gene, with a particularly high mutation density in the voltage

sensing segments. The site of mutations could be correlated to channel function, showing a

high number of activation-affecting mutations in the voltage sensor, and many current-blocking

mutations in the pore-forming linker between segments 5 and 6. We were unable to link the

physical properties of the exchanged amino acids to the resulting changes in INa. The dataset

was then investigated using machine-learning techniques. The resulting predictions showed

an accuracy only modestly better than chance, but with improved sensitivity and specificity,

characterized by an increased area under the receiver-operating curve and a positive Matthews

correlation coefficient. Although we were able to find published cell electrophysiology data for

over 200 missense mutations, further work is needed to increase the size of this dataset and

address issues with its bias and internal inconsistency. In addition, methods of interpreting

the change in physical properties due to the amino-acid substitution need to be developed.
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6.1 Introduction

The human gene SCN5A encodes the pore-forming α-subunit of the cardiac sodium channel

NaV1.5 which carries the fast sodium current INa. INa is responsible for the initial rapid

upstroke of the cellular action potential (AP) and a major determinant of electrical prop-

agation in the heart (Kléber and Rudy, 2004). Mutations in SCN5A have been linked to

several arrhythmogenic phenotypes, including Brugada syndrome, long-QT syndrome and

conduction disorders (Wilde and Brugada, 2011). However, the relationship between channel

genotype and disease phenotype is not fully understood and predictions of the pathogenicity

of SCN5A mutations are generally less accurate than those in other channel genes (Leong

et al., 2015; Kapa et al., 2009). In this study, we aimed to establish statistical links between

SCN5A missense mutations and INa properties. We hypothesized that the reduction in

complexity this entails compared to genotype-clinical phenotype correlations, could improve

the accuracy of predictions. Mechanistic modeling methods could then be used to estimate

the pathogenicity of the predicted INa effects at the tissue and organ level (see for example

Hoefen et al., 2012).

To investigate this hypothesis, we conducted an extensive literature review of reported mu-

tations in SCN5A for which cellular electrophysiology (EP) data was available. We focused

only on non-synonymous missense mutations. As a simple initial definition of a current

phenotype, we used the presence or absence of changes to activation, inactivation (including

recovery), or the late component of INa. In addition, we noted which mutations abolished

the current completely. We then evaluated the power of machine-learning techniques (Deo,

2015) to make genotype-INa predictions using this dataset. Finally, we investigated if quanti-

tative predictions could be made by applying the same methods to the problem of predicting

shifts in midpoints of activation and inactivation.

6.2 Methods

6.2.1 Finding mutations in the literature

To find publications on SCN5A missense mutations, we scanned through all PubMed results

for the term ‘SCN5A mutation’. In addition, we screened previously published overview

papers by Kapplinger et al. (2015, 2010); Hedley et al. (2009); Zimmer and Surber (2008);

Ackerman et al. (2004); Moric et al. (2003); Napolitano et al. (2003). From the selected

papers, we listed all nonsynonymous missense mutations for which cellular EP data was

known, or which were associated with a pathological clinical phenotype. Because we focused

on changes to channel function, we did not distinguish between nucleotide changes that

resulted in the same amino-acid change.
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6.2.2 Numbering of amino acids

In numbering the mutations, we used the position on the full, 2016 residue long sequence

for human SCN5A (Isoform 1, GenBank accession number AC137587). In some cases this

meant adjusting the numbering used in the paper.

6.2.3 Electrophysiological characterizations

Where possible, we collected information about the changes to whole-cell INa resulting from

each mutation. First, we asked whether or not the mutated channel conducted a current

large enough to measure (making no distinction between blocked pores and other factors such

as trafficking defects). For conducting channels, we then looked if activation, inactivation

(including recovery) and the late component were affected. Each of these fields was recorded

as ‘measured and affected’, ‘measured and not affected’, or ‘not measured’. The distinction

between affected and not affected was made based on the significance (p-value) given in the

paper and the wording used by the authors. Only homozygous measurements were included.

Where possible, we calculated shifts in midpoint of activation and inactivation from the data

given in the paper.

6.2.4 Experimental set-up

Every measurement recorded in the EP database was annotated with three fields: the type of

α-subunit, the cell-type, and the presence of β1-subunits. In order of descending frequency

the cell types were HEK (HEK293 and tsA-201), Xenopus laevis oocytes and CHO, but we

also found a small number of measurements in COS cells and transgenic mouse myocytes.

Some papers failed to mention the cell type and were listed as ‘unknown’.

Many papers did not give precise information about the type of α-subunit used. We found

at least five different subunits. First, some papers used a construct corresponding directly

to either isoform 1 or isoform 2. Isoform 1 was denoted as a; it has a glutamine at position

1077 (Q1077) and is 2016 amino acids long (GenBank accession numbers AC137587 and

NM 198056). Isoform 2 was denoted b; it lacks the 1077 glutamine (Q1077del) making it

2015 amino acids long (GenBank accession numbers AY148488 and NM 000335). Isoform

2 is now held to be the most common isoform, making it the preferred isoform for electro-

physiological investigations (Makielski et al., 2003; Ye et al., 2003). A number of α-subunit

clones have historically been used that turned out to contain unintended variants. The

most common of these is often called ‘hH1’ (GenBank accession number M77235) and is

equal to isoform 1 except for the rare variant R1027Q. We labeled this α-subunit a*. All

papers mentioning ‘hH1’ as the only reference were recorded as using a*. A less common

variant corresponding to isoform 2 with a T559A mutation was labeled b*. Finally, some of

the earliest papers had isoforms that turned out to contain additional rare and/or common
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Table 6.1: α-subunit types of the INa channel, found in our literature search. The code for each type is
given, as well as a description and, where possible, a GenBank accession number.

Code Description Acc. No.
a Isoform a (Q1077) AC137587
b Isoform b (Q1077del) AY148488
a* hH1 (Q1077; R1027Q) M77235
b* hH1a (T559A; Q1077del) None

variants, and in many cases the exact α-subunit type was not mentioned in the paper. An

overview of the four main α-subunit types found is given in Table 6.1.

6.2.5 Substitution frequency ratios

Each mutation included in our database replaced one amino acid with another. To visualize

the frequency with which each substitution was made, we calculated the observed frequency

as the number of times a substitution occurred divided by the total number of substitutions

in our database. Because SCN5A does not contain equal amounts of each amino acid, and

because some transitions are more likely than others, we calculated a second measure for

the expected frequency : First, we listed all possible single nucleotide changes in SCN5A and

computed the resulting amino-acid substitutions. Next, we filtered out all nonsense and

synonymous substitutions and used the remaining list as the list of expected mutations.

From this, the expected frequency was calculated the same way as before. Finally, we

calculated the ratio between the observed and the expected frequencies. This should be 1

if the mutation occurs with the expected rate, greater than 1 if it occurs more often, and

less than 1 if it occurs less frequently than expected. Two additional modifications were

made to allow visualization of the results: First, any substitution for which the expected

frequency was 0 was assigned a ratio of 1. Secondly, to allow logarithmic plotting of the

ratios, any substitution that was expected but never observed (and so should have ratio 0)

was assigned a ratio equal to the lowest naturally observed non-zero ratio.

6.2.6 Machine-learning datasets

We created two types of datasets used to test the power of machine-learning algorithms

to predict cellular EP. Both contained a number of features describing each mutation (see

below). In addition, each dataset contained an outcome field describing the outcome to

predict. We used both qualitative and quantitative outcomes.

A dataset was created for each of the qualitative outcomes ‘activation’, ‘inactivation’, ‘late’

and ‘zero’, where each outcome was listed as either ‘affected’ or ‘unaffected’. Only muta-

tions for which the outcome was known were included. Where multiple EP recordings were

available, conflicts were resolved by a majority vote. Mutations with an equal number of

reports claiming ‘affected’ and ‘unaffected’ were not included in the dataset.
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For (semi-)quantitative predictions, we created a dataset of shifts in midpoint of activation

or inactivation. Instead of using numerical voltages, we discretized the voltage shifts by

assigning them to one of three intervals: (−∞,−3mV), [−3mV, 3mV], (3mV,∞). Where

multiple values were available, we selected a single recording by looking at the experimental

conditions used. First, recordings co-expressing β1-subunits were preferred. Secondly, we

looked for recordings made with the α-subunit ‘b’. Thirdly, we prioritized recordings in

HEK cells over others (since these were the most common in our dataset). Finally, any

remaining conflicts were resolved by selecting the most recent recording.

6.2.7 Machine-learning features

Each mutation in the machine-learning datasets was specified by its index and a number of

features intended to capture aspects of its physical consequences. First, we added features

based on the annotations for SCN5A found on http://www.ncbi.nlm.nih.gov. These

were: side (cytoplasmic, transmembrane, extracellular), segment type (terminus, segment,

linker, domain linker) or region type (N-terminus, segment 1, segment 2, ..., segment 6,

segment linker 1-2, ..., segment linker 5-6, domain linker 1-2, ..., C-terminus). In addition,

we added the distance (in amino-acid counts) of each position to selected regions of the

protein, namely the 4th, 5th, and 6th segment, the linkers between segments 4 and 5 and

segments 5 and 6, the nearest transmembrane segment, the linker between domains 3 and

4, and the C-terminus.

Next, we added features describing physical properties of the substituted amino acids (e.g.,

their charge). Instead of adding the old and new properties directly, we only added the

change in each property (e.g., the charge of the original residue minus the charge of the new

residue). We added the change in average residue mass, percentage of buried residues, van

der Waals volume, and polarity ranking (all from Simpson, 2003), amino-acid charge, hy-

drophobicity ranking (Kovacs et al., 2006) and α-helix propensity (Pace and Scholtz, 1998).

Next, we added a measure of amino-acid similarity (Grantham, 1974) and of substitution

likelihood (Gonnet et al., 1992)

Finally, we added a measure of conservedness for each position in the amino acid. This was

calculated by performing a sequence alignment of human sodium channel genes and isoforms,

as listed in Table 6.2. To further emphasize the functionally most important positions,

two non-human sequences were added that have a history in cell electrophysiology: the eel

sequence by Noda et al. (1984) and the sequence by Rosenthal and Gilly (1993) of Doryteuthis

opalescens, a squid formerly known as Loligo. Sequences were aligned using Clustal 2.1

(Larkin et al., 2007) using the ‘Gonnet-250’ scoring matrix. The resulting conservedness

score for each position of SCN5A was then added to the set of machine-learning features.
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Table 6.2: All used human sodium channel isoforms.

Name Accession number Name Accession number
SCN1A, isoform 1 NP 001189364.1 SCN5A, isoform 3 NP 001092874.1
SCN1A, isoform 2 NP 008851.3 SCN5A, isoform 4 NP 001092875.1
SCN1A, isoform 3 NP 001159436.1 SCN5A, isoform 5 NP 001153632.1
SCN2A, isoform 1 NP 001035232.1 SCN5A, isoform 6 NP 001153633.1
SCN2A, isoform 2 NP 001035233.1 SCN7A NP 002967.2
SCN3A, isoform 1 NP 008853.3 SCN8A, isoform 1 NP 055006.1
SCN3A, isoform 2 NP 001075145.1 SCN8A, isoform 2 NP 001171455.1
SCN3A, isoform 3 NP 001075146.1 SCN9A NP 002968.1
SCN4A NP 000325.4 SCN10A NP 006505.2
SCN5A, isoform 1 NP 932173.1 SCN11A NP 001274152.1
SCN5A, isoform 2 NP 000326.2

6.2.8 Machine-learning methods

Weka 3.7.12 (Hall et al., 2009) was used to quickly experiment with different machine-

learning methods. To increase our chance of success, we experimented with methods based

on very different underlying principles. We used a tree-based ‘Random forest’ classifier

(Breiman, 2001), a Bayesian-statistics based ‘Naive Bayes’ classifier (John and Langley,

1995), a classifier based on a multilayer perceptron (a type of neural network), a support-

vector machine classifier (Chang and Lin, 2011) and a nearest-neighbor classifier, which is

an example of an instance-based learning method (Aha et al., 1991).

Performance was assessed using 10-fold cross-validation. Success was evaluated using several

measures: the percentage of correct guesses (or accuracy, ACC), sensitivity (or true positive

rate), specificity (or true negative rate), the area under the receiver operating characteris-

tic (or area-under-curve, AUC, Mason and Graham, 2002), and the Matthews correlation

coefficient (MCC).

As a baseline for each measure a Zero-R classifier was used. This simply assigns the most

common class in a dataset to every new instance it evaluates. Thus, when a dataset contains

90 instances where the current is affected and 10 where it is not, the Zero-R classifier always

predicts ‘affected’ and so has an accuracy of 90%. Using this baseline, another method with

an apparently high accuracy of 91%, can be seen to have only made a small improvement

over pure chance.

To see which features of the data were most useful for classification, we ranked them accord-

ing to their information gain. See the Weka documentation (http://www.cs.waikato.ac.

nz/ml/weka/) for details.

6.2.9 Other software tools

All gathered data was stored in an SQLite database, and analysis was performed using

Python. Statistical tests were carried out using SciPy (Jones et al., 2001).
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6.3 Results
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Cellular EP measured
for one or more mutations,
known to change
Cellular EP measured
for one or more mutations,
no changes observed
Mutation reported,
cellular EP unknown
Positions 558 and 1077

Figure 6.1: A schematic overview of NaV1.5. The transmembrane segments are shown for all four domains
(left to right). In each domain, the voltage-sensing 4th segment is colored dark blue. Positions at which
a mutation was tested and found to change the cellular EP are marked with blue diamonds. Positions at
which one or more mutations were tested but no changes to the cellular EP were observed are indicated with
black crosses. All remaining positions where a mutation was observed or described in the literature (i.e.,
investigated in connection with altered heart rhythm) are indicated with yellow circles. The locations of the
common polymorphisms H558R and del1077Q are indicated with red boxes. The diagram was constructed
with near-equal spacing between positions, to indicate the relative size of the sections. The linker between
segments 5 and 6 of each domain is known to fold back into the membrane, as is shown in the diagram.
Note that the folding of segments 5 and 6 and the inter-domain linkers in this diagram is purely symbolic,
and the exact location of mutations may differ. The division of SCN5A into domains, segments and linkers
is based on the annotations given on http://www.ncbi.nlm.nih.gov.
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Table 6.3: The number of mutations in our database for various categories. Because some data is available
for different substitutions at the same position, we also provide the number of unique positions seen.

mutations positions
Total found 610 (5.1%) 482 (24%)
With EP-data 243 (2.0%) 199 (9.9%)
EP changed 175 143
EP unchanged 68 64
Activation changed 69 60
Inactivation changed 125 104
Late component changed 40 35
Zero current 30 27
Possible 11923 2016
Possible (with duplicates) 13357 2016

Fig. 6.1 shows a schematic overview of NaV1.5 and its four domains, each featuring six

transmembrane segments (shaded regions). The fourth segment in each domain is sensitive

to changes in voltage, and the linker between segments 5 and 6 is known to fold back into the

membrane to create the channel pore (Catterall, 2000). Both the C-terminus and the linker

between domains III and IV have been associated with inactivation and the late component

of the sodium current (Motoike et al., 2004). Many mutations outside of these sensitive

areas have also been linked to arrhythmia.

A numerical view of the data is given in Table 6.3. It shows the number of mutations

in our database, and the number of unique positions at which they occur. In addition to

the total number gathered, the table shows the number for which EP-data is available,

the number for which EP was altered, and the totals for each specific type of change. We

gathered 378 reports of EP-data measurements, but as several studies investigated the same

mutations (either confirming previous work or researching new aspects), we found cellular

EP for only 243 missense mutations. The final row in the table gives the total number of

possible missense mutations arising from a single nucleotide change in SCN5A before and

after removing duplicate gene products. This was calculated by simply listing all nucleotide

substitutions in the coding region of SCN5A and noting which ones resulted in an amino-acid

switch (not including stop codons). From this we calculated that there are approximately

11923/2016 ≈ 5.91 possible mutations per position in the gene, so that while Fig. 6.1

accurately reflects the positions at which mutations are known, it should not be taken as an

indication of the coverage of our mutation dataset, which it overstates by about six times.

A list of mutations and the resulting changes in cellular EP is given in Section 6.A.5.
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6.3.1 Positional properties
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Figure 6.2: Relative mutation densities in different regions of SCN5A. Mutation densities were calculated
as number-of-mutations-in-region/length-of-region. Relative densities were then obtained by subtracting the
mutation density of the entire gene. The resulting measure indicates which regions of the protein have a
higher or lower-than-average number of mutations per amino acid. The top panel shows the relative density
for all regions of SCN5A, starting with the N-terminus (N), then segment 1 of domain 1 (D1S1), the linker
between segments 1 and 2 in domain 1 (D1L12), etc. The linker between domains 1 and 2 is indicated as
L12. The bottom left panel shows the relative mutation density in the four domains, the terminals and the
domain linkers. The bottom right panel shows the density in the different types of region: first segment,
second segment, linker between segments 1 and 2 and so on.

Fig. 6.2 shows the estimated relative mutation densities in all regions of the channel. The

mutations used for this figure were all reported in the literature on cardiac arrhythmias (see

Section 6.2.1). The voltage-sensing fourth segment was found to have the highest relative

mutation density. Although many mutations were reported in the C- and N-terminus, their

large size resulted in a low mutation density. Differences between the same regions in

different domains were found. For example the linker between segments 3 and 4 was found

to have a higher-than-average mutation density in domains 1, 3 and 4 but a lower-than-

average density in domain 2. Looking at domains on the whole showed similar differences,

with mutations in domain 2 being relatively uncommonly reported while domains 3 and 4

were most likely to contain mutations reported in the scientific literature. Due to its short

length, and perhaps its role in inactivation, the linker between domains 3 and 4 was found

to have a very high mutation density.
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Figure 6.3: Number of times a significant change in cellular EP was reported due to mutations in different
regions of SCN5A. This figure is based entirely on mutations for which cellular EP data is known. Mutations
that induced multiple changes were counted twice, so if a mutation significantly influenced both activation
and inactivation the counts for both were increased by one. Conflicts in EP data were resolved by tallying
votes for and against significant change (see Section 6.2.6).

The number of changes induced by mutations in different regions of the gene are shown in

Fig. 6.3. Mutations leading to a channel that failed to produce any current appeared to occur

predominantly in the pore-forming linker between segments 5 and 6. This suggests changes

to the pore were investigated more often than mutations abolishing current through some

other mechanism (e.g., extreme changes in voltage dependence or trafficking and folding

defects). Among the transmembrane segments, the voltage-sensing fourth segment was the

main contributor of changes in activation, but surprisingly the domain linkers were almost

equally prone. However, the number of changes in activation per amino acid was much

higher in the fourth segment than anywhere else in the gene. Changes to inactivation were

also common in the voltage-sensing segment, but also occurred frequently in the domain

linkers and the C-terminus. Surprisingly, the linker between domains 3 and 4 showed very

few mutations affecting inactivation, but this may be explained by its relatively small size.

Most mutations affecting late INa were found in the domain linkers and C-terminus. In

general, mutations affecting the late component of INa were found in regions also affecting

inactivation, supporting the idea that late INa is connected to a failure to fully inactivate.
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These results are consistent with earlier reports of INa structure-function relationships. For

example, Kapa et al. (2009) investigated the predictive value of different SCN5A regions

when predicting pathogenicity of long-QT syndrome. They found a strong link between

long-QT pathogenicity and the transmembrane segments and the C-terminus, which agrees

with our finding that these regions are linked to changes in the late component of INa. While

Fig. 6.3 shows a connection between the domain linkers and the late component, no such

link was established in the study by Kapa et al., but this may be explained by our larger

dataset and SCN5A-specific approach. Motoike et al. (2004) showed that inactivation and

late INa are associated with both the C-terminus and the linker between domains 3 and 4.

Our results confirm the role of the C-terminus for both, but indicate that while the 3-4 linker

has a very high mutation density, the absolute number of mutations affecting inactivation

and late INa is similar to the other domain linkers. This may point to a novel role for the

other domain linkers, but could also be explained if most mutations in the 3-4 linker are too

severe to be compatible with life (see Section 6.4.2.2).

6.3.2 Amino-acid properties

In Fig. 6.4, a color-coded representation of the amino-acid substitutions in our database

is shown. Each square in the central panel shows if a particular amino-acid substitution

occurred more frequently or less frequently than expected (assuming all nucleotide sub-

stitutions are equally likely). The histograms at the top and side show the over/under-

representation of amino acids in general. Replacements of arginine (R, positive charge) for

histidine (H, positive charge) were seen most often, followed closely by R to glutamine (Q,

no charge), and threonine (T, no charge) for methionine (M, no charge). R was 4 times more

likely to be replaced than average, and tryptophan (W) was the most common substitute.

Interestingly, the results were difficult to explain using amino-acid properties. For example,

charge conservation was over-represented in some cases (R to H) and under-represented in

others (aspartic acid, D to glutamic acid, E).

We next sought to relate the changes in EP to changes in amino-acid properties induced

by each mutation. In Fig. 6.5, the distribution of property changes is plotted separately

for different types of change of EP. Changes in charge were marginally more common in

changes to activation and inactivation than in the unchanged case, and large changes to α-

helix propensity were uncommon regardless of the associated EP-change. In some properties

(for example volume) a slight bias against zero values could be seen, but this is explained by

the fact that we did not include synonymous mutations so that near-zero property differences

are statistically unlikely (and sometimes impossible). Taken together, the results indicate

that changes in individual amino acids are unsuitable to accurately predict the effects of a

mutation on INa.
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Figure 6.4: (Central panel) The ratio of found amino-acid substitution versus expected substitutions. Each
row represents the original amino acid, while each column represents the residue it was replaced with. A dark
red square indicates this substitution happened more often than expected, while a dark blue square shows
that the substitution happened fewer times than was expected. Details of how the figure was constructed
are given in Section 6.2.5. (Top panel) A histogram showing the cumulative ratios for the new amino acids.
(Right panel) A histogram showing the cumulative ratios for the old amino acids.

119



Predicting changes to INa from missense mutations in SCN5A

Δ
 A

ve
ra

ge
re

si
du

e 
m

as
s

−100
−50

0
50

100
zero act inact late unchanged zero act inact late unchanged

Δ
 C

ha
rg

e

−1

0

1

Δ
 H

yd
ro

-
ph

ob
ic

ity

−30
−20
−10

0
10
20
30

Δ
 H

el
ix

pr
op

en
si

ty

−4
−2

0
2
4

Δ
 b

ur
ie

d
re

si
du

es
 (%

)

−50
−25

0
25
50

Δ
 P

ol
ar

ity
ra

nk
in

g

−10

0

10

Δ
 V

ol
um

e
(v

/d
 W

aa
ls

)

−100
−50

0
50

100

zero act inact late unchanged zero act inact late unchanged

Figure 6.5: (Left) Changes in EP in relation to changes in amino-acid properties. We calculated the
difference in several properties between the new and the old amino acid involved in the mutation. From left
to right, the figure shows mutations that remove all current, affect activation, affect inactivation, affect the
late component, or do not seem to affect the current at all. The left panel shows the raw data, plotted with
a slight ‘jitter’ on the x-axis to better distinguish individual points. (Right) Box plots for the same data.
The line inside the box represents the median, and the top and bottom of the box indicate the first and
third quartiles. The whiskers indicate the data within 1.5IQR of the upper and lower bounds of the box,
and a cross is drawn at the sample mean. A one-way ANOVA test found no significant differences between
the group means.
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6.3.3 Midpoints of (in)activation
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Figure 6.6: The measured shift in midpoint of activation and inactivation, plotted against the position of
the mutation on the gene. This figure was constructed from all the available EP-data, and so may include
the same mutation more than once. Midpoint shifts are incorporated without regards to the statistical
significance of the shift. The positions corresponding to transmembrane segments are indicated using grey
shading, and the voltage-sensing fourth segments are highlighted in red.

To determine if quantitative predictions could be made, we investigated the link between

the site of the mutation, and size of the resulting shift in midpoint of (in)activation As

Fig. 6.6 shows, large shifts in midpoints were observed throughout the gene. Compared to

the other transmembrane segments, the fourth segment stood out due to the large number

of mutations, and many large shifts could be seen. Yet large shifts were also frequently

observed in other transmembrane segments, in the N- and C-terminus and in the domain

linkers.
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Table 6.4: Success in predicting presence of inactivation defects, expressed as accuracy (ACC), sensitivity,
specificity, area under the curve (AUC), and the Matthews correlation coefficient (MCC).

Method ACC (%) Sens. (%) Spec. (%) AUC MCC
Zero-R 61.0 100 0 0.490 0
Random forest 62.4 72.8 46.3 0.671 0.195
Naive Bayes 70.2 75.2 62.5 0.730 0.376
MLP classifier 68.3 68.8 67.5 0.695 0.356
Support-vector machine 60.5 99.2 0 0.496 -0.056
k-Nearest neighbor 62.0 70.4 48.8 0.590 0.193
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Figure 6.7: Receiver operating characteristics for the inactivation and zero-current classification problems,
for the three methods that performed best. The corresponding areas (AUCs) are indicated in brackets.

6.3.4 Machine-learning results

Table 6.4 shows the success rate of a number of different methods applied ‘out-of-the-box’

to the problem of determining whether or not a mutation would affect inactivation. Com-

pared to baseline (the Zero-R classifier), only modest improvements in accuracy could be

seen, indicating that none of the tested methods performed well on accuracy. The Naive

Bayes classifier scored highest, with correct guesses for 70% of mutations, just 9 percent

points higher than Zero-R (statistically significant with p ≈ 0.04 using Fisher’s exact test).

However, the method’s specificity (true negative rate) could be improved considerably over

Zero-R, leading to strong increases in both AUC and MCC. The AUC for the three best-

performing classifiers for inactivation is visualized in Fig. 6.7.A.

Table 6.5 shows the best results when predicting which mutations changed inactivation,

activation or the late component and which mutations resulted in no current at all. For

both activation and inactivation, only a modest improvement on baseline accuracy was

made, but AUC and MCC could be improved considerably. Predicting changes to the late
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Table 6.5: Best results per problem. Zero-R classifier results are shown in brackets.

Outcome Percent correct AUC MCC Method
Inactivation 70.2% (61.0%) 0.730 (0.5) 0.376 (0) Naive Bayes
Activation 66.8% (62.5%) 0.646 (0.5) 0.279 (0) Random forest
Late component 69.2% (66.7%) 0.637 (0.5) 0.277 (0) Random forest
Zero current 89.7% (87.7%) 0.873 (0.5) 0.531 (0) MLP classifier

Table 6.6: Success rate for predicting discretized shifts in midpoint of inactivation.

Method Percent correct AUC
Zero-R 43.1% 0.479
Random forest 58.7% 0.725
Naive Bayes 51.4% 0.661
MLP classifier 48.1% 0.625
Support-vector machine 44.0% 0.508
k-Nearest neighbor 53.7% 0.643

component proved most difficult, with MLP, the best-performing classifier, showing only 2%

improvement over baseline. Only a small number of mutations abolished INa completely,

leading to a very high baseline (Zero-R) accuracy of 89.7%, which none of the methods

could significantly improve. However, improvements on AUC were seen with a Random

forest, Naive Bayes or MLP classifier.

We next ranked the different features (mutation properties) from the highest to the lowest

information gain (see Section 6.2.8). For the inactivation problem, the most useful properties

were region type (N-terminus, segment 1, linker 5-6, etc.), the distance (on the gene) to the

pore-forming linker between segments 5 and 6, the distance to segment 5 and the distance

to the linker between domains 3 and 4. Region type was the most useful feature for all four

problems, and only the zero-current dataset assigned a non-zero information gain to any

of the physical amino-acid properties. Even difference in charge resulted in a very small

information gain in the voltage-dependent activation problem, which corresponds to the

findings in Fig. 6.5. The information gain rankings for each problem are given in Section

6.A.4.

Finally, we assessed the performance of the same methods on the problem of predicting

discretized shifts in activation and inactivation. The results for inactivation are shown in

Table 6.6. Here, the Random forest method performed best, but overall accuracy was low.

The results for activation were similar.

6.4 Discussion

We assembled a large dataset containing information about mutations reported in the liter-

ature on SCN5A channelopathies and the resulting changes to the cellular EP.

We found that missense mutations occur throughout the gene, but with a higher rate per
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amino acid in transmembrane segments 4 and 6 than in any other segment. The linkers

between domain 1-2 and 2-3 showed a lower than average mutation density, but a high

density was seen in the linker between domains 3 and 4. Of the four domains, domain 2 had

the lowest mutation density.

Changes in function correlated with the location of the mutation on the gene. Complete

abolishment of current was often observed for mutations in the pore-forming linkers between

segment 5 and 6. Effects on inactivation were mainly seen in the voltage-sensing 4th segment,

the 6th segment, the domain linkers and the C-terminus. This is consistent with earlier

findings by Brunklaus et al. (2014), who showed mutations in these regions were often

implicated in LQT-3. Mutations influencing late INa often occurred in the C-terminus, and

appeared mostly in areas also affecting inactivation.

The reported amino-acid substitutions did not occur with the frequencies that would be

expected based on unbiased single nucleotide changes. Instead, arginine mutations were

strongly overrepresented in our dataset, while tryptophan was the most common substitute

residue. However, no strong relationship between the change in amino-acid properties and

the mutation’s effects could be seen.

We applied five different machine-learning techniques to the problems of predicting quali-

tative changes in EP. In terms of accuracy, no major improvements over baseline (i.e., the

performance of a Zero-R classifier) were seen. However, using Naive Bayes and MLP classi-

fiers we found a reasonable trade-off between specificity and sensitivity could be achieved,

leading to better-than-chance AUCs and MCCs. The region type (see Section 6.2.7) was

found to be the most informative feature of a mutation in all four problems examined. Again,

the physical properties of the exchanged amino acids provided little information.

6.4.1 Comparison to previous work

To the best of our knowledge, this work is the first to try and predict changes to the

current instead of predicting pathogenicity, so that a comparison with previous studies and

alternative bioinformatics methods is difficult to make. However, Leong et al. (2015) tested

the performance of different tools for predicting pathogenicity of channel mutations and

found they all performed poorly on SCN5A compared to KCNQ1 and KCNH2. The AUC

and MCC of our current-phenotype predictions were higher than those listed by Leong et al.

for commercially available tools to predict pathogenicity, which lends some support to our

hypothesis that current phenotypes may be predicted more accurately than clinical ones.

Our work also provides a novel and comprehensive compendium of SCN5A mutations, similar

to, for example, (Kapplinger et al., 2015) but with a unique focus on INa-characteristics.
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6.4.2 Future work: improving predictions

The predictive power of a dataset depends on three critical factors: it must contain enough

information, it must be unbiased, representing equally plausible outcomes in equal measures,

and it must be internally consistent. Once a dataset meeting these criteria is available,

it must be reformatted in such a way that each mutation is represented by appropriate

features. These are properties of the mutation that are indicative of some essential aspect of

the mutation, such as its location in the protein or the associated change in electrical charge.

In the following sections, each of these factors is addressed separately, and recommendations

for the future are made.

6.4.2.1 Increasing dataset size

Considering the work that goes into measuring the cellular EP changes due to a mutation,

the total number of 378 EP recordings of 243 unique mutations is an impressive achievement

by the scientific community. However, as Table 6.3 shows this accounts for only 2.0% of the

total number of amino-acid substitutions possible from a single nucleotide substitution. As

shown in Section 6.A.1, the number of EP data reports for SCN5A mutations has steadily

increased each year. One development that could lead to dramatic increases in data is

the inclusion of paralogues (Walsh et al., 2014; Amarouch and Abriel, 2015). This entails

aligning the sequence of SCN5A with that of highly similar sodium channel genes (i.e.,

SCN1A, SCN2A, SCN3A, etc) and using data about their mutations for similar (conserved)

positions in SCN5A.

Besides increasing the size of the dataset, care must be taken to improve the manner in

which experimental conditions are reported, perhaps using a scheme such as outlaid by

Quinn et al. (2011). For example, Section 6.A.2 shows that the fraction of papers that did

not explicitly state the α-subunit that was used has remained significant in the last decade,

despite the availability of sequencing methods and unique IDs for clones.

6.4.2.2 Reducing dataset bias

Almost all of the mutations listed in our database were reported as a result of a clinical

investigation of a patient with some pathological cardiac phenotype. As Table 6.3 shows,

only 28% of EP-data results in our dataset showed no change. This bias is likely created

by the process of identifying, investigating and publishing mutations: Why investigate a

healthy patient, study a mutation not known to be relevant or publish a negative result?

Indeed, the mutations we report as ‘unchanged’ were almost exclusively published in papers

reporting that an effect was seen in the presence of a secondary factor (for example the

common polymorphism H558R or drugs such as lidocaine). This suggests that the negative

results in our database may be borderline positive, so that the actual bias problem is still

greater. One area where our data does not suffer from reporting bias is the ‘zero current’
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predictions, for which there are many negative examples. As Table 6.5 shows, the classifiers

for this task had the highest AUC and MCC of all tasks, which shows the importance of

reducing this type of bias.

Another source of bias is introduced by compatibility of a mutation with life. The influence

of this bias is more difficult to judge: Since extreme mutations (such as frameshift mutations

or trafficking defects) are still commonly reported, it seems that if a heterozygous mutation

renders a channel completely ineffective, the body can compensate by upregulating the over-

all production of cardiac sodium channels or downregulating others (Sarkar and Sobie, 2010).

This means that truly catastrophic mutations are likely not at the extreme end of the cellular

EP spectrum, but have a slightly less extreme effect, for example a strong increase in late

sodium or a large shift in voltage-dependence of activation causing the channel to activate

around the resting potential. There is also a chance that a non-functioning heterozygously

expressed channel interferes with the unmutated channel via dominant-negative α-subunit

interaction (Clatot et al., 2012b).

Addressing the problem of dataset bias requires a targeted approach. Using Fig. 6.2 and

Fig. 6.4 as a guide, mutations in under-represented areas or with uncommon amino-acid

substitutions could be identified and investigated. This would involve investing resources

into mutations with no clear clinical significance, but would greatly increase the value of

the combined EP data gathered so far. A cheaper alternative may be to put out a call to

all labs harboring unpublished negative data to process and publish it, ideally in a freely

accessible online database.

6.4.2.3 Improving internal consistency

In our dataset, more than one EP data report exists for 74 mutations, and some inconsistency

can be seen for 43 of those (58%). Two examples of internal inconsistency are given in Section

6.A.3. For figures such as Fig. 6.3, which dealt with EP data classes (activation, inactivation,

etc.) we used a voting system to resolve conflicts (see Section 6.2.3). For numerical data

(midpoint shifts) we used a filtered version of the dataset in which conflicts were resolved

by selecting the favored experimental conditions. In the future, when even more data is

available, it may be possible to select only a subset of the data that conforms to a certain

experimental set-up. This will resolve the issue of different experimental conditions, but the

best way to deal with remaining conflicts remains an open issue.

6.4.2.4 Finding suitable features

In our current set-up, each mutation is described by two types of feature: positional prop-

erties (e.g., the index on the gene, the distance to the nearest voltage sensor, etc.) and

properties derived from the amino-acid substitution (e.g., change in charge, change in hy-

drophobicity, etc.). Looking at Fig. 6.2 and Fig. 6.3 it can be seen that there is some
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correlation between position on the gene and the change in EP. While it is not the position

on the gene, but the position in the folded protein that determines function, nearness on

the gene implies nearness in three-dimensional space. The amino-acids substituted by the

mutation are much harder to link to changes in channel function (Fig. 6.4). To get closer to

physical function, we added a number of commonly used amino acid properties, specifically

the change in the property induced by the substitution. However, visual inspection showed

no clear emergence of structure (Fig. 6.5).

Creating a workable predictor will require finding features that capture the difference in

physical properties before and after an amino-acid substitution. One approach could be

to build a full physical model and use molecular dynamics methods to compare channel

structure before and after a mutation. However, such models are usually based on homology

models which do not include the important domain linking segments and terminals, and

molecular dynamics is computationally very expensive. An alternative approach may be

to segment the gene, for example using the ‘basic units of protein structure’ proposed by

Berezovsky et al. (2016), and then to inspect the amino-acid properties on a per-segment

basis or via the calculation of three-dimensional ‘moments’ (Silverman, 2000).

Finally, it will also be important to take into account any post-translational modification of

channel function via the interaction with various signaling mechanisms (Herren et al., 2013).

6.5 Conclusion

There is a surprisingly large amount of data on SCN5A missense mutations available in the

literature and EP data is known for 243 mutations: 2% of the 11923 mutations that could

theoretically result from single nucleotide changes. However, these data show a strong bias

towards pathogenic mutations and show internal inconsistency in 58% of the 74 mutations

investigated more than once. Prediction is further hampered by the lack of good quantitative

measures of mutation similarity based on the physical properties of the substituted amino

acids. In order to arrive at good genotype-phenotype predictions without resorting to costly

molecular dynamics simulations, both these issues will have to be addressed directly by the

scientific community.
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6.A Supplementary results

6.A.1 Reported mutations over time

Fig. 6.8 shows that the number of publications mentioning mutations in SCN5A has been

steadily increasing each year, while the number of newly reported mutations exhibits more

fluctuation. The number of EP data reports has also seen a gradual increase over time.
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Figure 6.8: (Left) The number of publications on PubMed matching the query ‘SCN5A mutation’, per
year. (Center) The number of first reports of mutations in our database, per year. Note the broken y-axis
to accommodate the large number of mutations reported in 2010. (Right) The number of EP data reports
in our database, per year.

6.A.2 Reporting of experimental conditions

Fig. 6.9 shows that, despite the availability of sequencing and databases for genes and gene

products, the number of publications not reporting the exact α-subunit used is high.
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Figure 6.9: The different α-subunits used, in percentages per year. The fraction of subunits with some
uncommon variant (a*, b*) can be seen to diminish over time, but the proportion of studies that do not
report the variant they use is still significant.
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6.A.3 Inconsistencies in the dataset

Two examples of mutations reported multiple times are given in Table 6.7. The first, R222Q,

was investigated using different α-subunits, with and without β1-subunits and in different

expression systems but all experimenters obtained similar results. The second, D1790G, was

investigated under more similar conditions, but experimenters found different results.

Table 6.7: Consistent and inconsistent EP-change reports. Mutations can have an effect on activation (A),
inactivation (I) and late INa (L) or they may lead to no measurable current (Z). Changes are characterized
as yes/no or unmeasured, and the number of cells used to test the mutant are shown in brackets. In addition,
the used expression system is shown, along with the α-subunit used, the co-expression of β1-subunits, and
the original reference.

R222Q

A I L α β1 Cell Reference

yes (6) yes (9) no (8) a no HEK Cheng et al. (2010)

yes (13) yes (13) no (10) b no HEK Cheng et al. (2010)

yes (11) yes (10) a yes COS Laurent et al. (2012)

yes (10) yes (10) yes CHO Mann et al. (2012)

yes (8) yes (8) no (-) a no CHO Nair et al. (2012)

yes (13) yes (14) no (7) yes HEK Beckermann et al. (2014)

D1790G

A I L α β1 Cell Reference

no (-) no (9) a* no HEK An et al. (1998)

no (6) yes (20) no (20) a* yes HEK An et al. (1998)

yes (4) a* yes HEK Abriel et al. (2000)

yes (9) yes (9) yes (-) a* yes HEK Baroudi and Chahine (2000)

yes (6) yes (13) no (-) a* no HEK Wehrens et al. (2000)

no (6) yes (6) a* yes HEK Liu et al. (2002)

yes (8) yes (16) no HEK Liu et al. (2003)

6.A.4 Information gain per feature

The following four tables show the information gain of each feature in the machine-learning

datasets, for the problems of predicting changes to activation, changes to inactivation,

changes to the late component, and complete absence of INa. Information gain is an entropy-

based measure, see the Weka documentation (http://www.cs.waikato.ac.nz/ml/weka/)

for details.
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Table 6.8: Information gain: Activation

Gain Feature Gain Feature

0.1048 Region type 0 ∆ Volume (v/d Waals)

0.0959 Distance to any transmembrane segment 0 ∆ Average residue mass

0.088 Segment type 0 ∆ Charge

0.0814 Distance to segment 4 - segment 5 linker 0 Distance to C-terminus

0.0791 Conservedness score 0 ∆ Helix-propensity

0.0777 Side 0 Distance to segment 5 - segment 6 linker

0.0771 Distance to segment 5 0 Distance to segment 6

0.0731 Distance to segment 4 0 Distance to linker domain III - domain IV

0 ∆ Hydrophobicity 0 Substitution likelihood (Gonnet)

0 ∆ % Buried residues 0 Amino-acid similarity (Grantham)

0 ∆ Polarity ranking 0 Index on the gene

Table 6.9: Information gain: Inactivation

Gain Feature Gain Feature

0.1829 Region type 0.0618 Distance to segment 4

0.1108 Distance to segment 5 - segment 6 linker 0 ∆ Volume (v/d Waals)

0.0973 Distance to segment 5 0 Distance to segment 6

0.0927 Distance to linker domain III - domain IV 0 ∆ Polarity ranking

0.0903 Conservedness score 0 ∆ Average residue mass

0.0895 Distance to C-terminus 0 ∆ % Buried residues

0.0895 Index on the gene 0 ∆ Charge

0.0801 Segment type 0 ∆ Hydrophobicity

0.079 Distance to any transmembrane segment 0 Substitution likelihood (Gonnet)

0.0697 Distance to segment 4 - segment 5 linker 0 Amino-acid similarity (Grantham)

0.0668 Side 0 ∆ Helix-propensity

Table 6.10: Information gain: Late component

Gain Feature Gain Feature

0.1154 Region type 0 ∆ Helix-propensity

0.039 Side 0 Conservedness score

0.0357 Segment type 0 Amino-acid similarity (Grantham)

0 Distance to C-terminus 0 Distance to segment 5 - segment 6 linker

0 Substitution likelihood (Gonnet) 0 Distance to any transmembrane segment

0 ∆ Hydrophobicity 0 Distance to segment 6

0 ∆ Charge 0 Distance to segment 5

0 ∆ Polarity ranking 0 Distance to linker domain III - domain IV

0 ∆ Average residue mass 0 Distance to segment 4 - segment 5 linker

0 ∆ % Buried residues 0 Distance to segment 4

0 ∆ Volume (v/d Waals) 0 Index on the gene
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Table 6.11: Information gain: Zero current

Gain Feature Gain Feature

0.2139 Region type 0 Distance to C-terminus

0.1356 Distance to segment 5 - segment 6 linker 0 ∆ % Buried residues

0.1163 Side 0 ∆ Hydrophobicity

0.1116 Distance to segment 4 0 ∆ Charge

0.0999 Segment type 0 Conservedness score

0.0753 Distance to segment 4 - segment 5 linker 0 ∆ Helix-propensity

0.0601 Distance to segment 5 0 Substitution likelihood (Gonnet)

0.049 ∆ Average residue mass 0 Distance to segment 6

0.049 ∆ Volume (v/d Waals) 0 Distance to linker domain III - domain IV

0.0458 Distance to any transmembrane segment 0 Amino-acid similarity (Grantham)

0 ∆ Polarity ranking 0 Index on the gene

6.A.5 EP-data overview

Table 6.12 shows the EP-data collected for this paper. The first columns show the EP-

data reference and the mutation. The next four indicate whether the authors considered

the mutation to change activation, inactivation, or the late component, and whether the

mutation abolished current completely. The next two columns show any reported shifts in

midpoint of activation (∆Va) and inactivation (∆Vi). Finally, the cell type, α-subunit, and

co-expression of β1-subunit are given. Cell types are HEK cells, CHO cells, Oocytes (Ooc.)

or Mouse myocyte (MM). α-subunits are as defined in this paper (see Table 6.1), with the

addition of a** which indicates the alpha-subunit used in a study by Chen et al. A digital

version of the same data can be obtained from the author.
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Table 6.12: EP Data

Publication Mutation Act. Inact. Late Zero ∆Va ∆Vi Cell α β1

Gütter et al. (2013) G9V no no no 1.3 0.01 HEK a* no

Gütter et al. (2013) R18Q no no 0.5 2.2 HEK a* no

Gütter et al. (2013) R18W no yes no -0.2 1.3 HEK a* no

Gütter et al. (2013) R27H yes yes 4 -0.4 HEK a* no

Kapplinger et al. (2015) E30G no yes no -0.2 2.6 HEK b no

Tan et al. (2005) R34C no no no -2 0 HEK b no

Tan et al. (2005) R34C no no no 3 2 HEK a no

Gütter et al. (2013) G35S no no -1.7 -1.8 HEK a* no

Lin et al. (2008) R43Q no no no -0.29 -1.77 HEK a* yes

Kapplinger et al. (2015) E48K yes no no 3.9 -2.7 HEK b no

Kapplinger et al. (2015) E48K no no no 3.8 0.4 HEK a no

Hoshi et al. (2014) N70K no -0.14 HEK a no

Kapplinger et al. (2015) Y87C no no no 0.6 -1.5 HEK b no

Beyder et al. (2014) I94V no yes no -0.5 -1.3 HEK b no

Gütter et al. (2013) V95I yes no 1.2 1 HEK a* no

Clatot et al. (2012a) R104K yes no 8.6 0 HEK no

Gütter et al. (2013) R104Q no yes -0.5 -1.6 HEK a* no

Clatot et al. (2012a) R104W yes HEK no

Clatot et al. (2012a) R121W yes HEK no

Holst et al. (2010) R121W yes HEK no

Gütter et al. (2013) V125L no yes no 0.7 3.1 HEK a* no

Gütter et al. (2013) K126E no yes 2.8 3.4 HEK a* no

Swan et al. (2014) I137V no no -0.5 1.6 HEK b yes

Swan et al. (2014) I141V yes no -7 1.5 HEK b yes

Gui et al. (2010a) E161K yes no 19.8 1.5 HEK a* no

Gui et al. (2010b) E161K yes no 19.1 1.9 HEK a* no

Smits et al. (2005a) E161K yes no 11.9 0.9 HEK a* no

Gui et al. (2010a) T187I yes HEK a* no

Gui et al. (2010b) T187I yes HEK a* no

Kapplinger et al. (2015) R190Q no no no 0.1 0.8 HEK b no

Gui et al. (2010a) L212P yes yes -15 -10.5 HEK a* no

Gui et al. (2010b) L212P yes yes -14.6 -10.4 HEK a* no

Makita et al. (2005) L212P yes yes no -15.4 -9 HEK yes

Kapplinger et al. (2015) S216L no no no -2 0.3 HEK b no

Marangoni et al. (2011) S216L no no no 1 1 HEK a* yes

Wang et al. (2007a) S216L no yes yes -0.2 4.7 HEK b yes

Abe et al. (2014) R219H yes yes 1.7 -11.4 HEK b no

Chen et al. (1996) R219H yes yes -2.3 -9.6 Ooc. a** no

Gosselin-Badaroudine et al. (2012) R219H no no -1.7 3.67 Ooc. yes

Chen et al. (1996) R219Q no no 3.3 -0.8 Ooc. a** no

Beyder et al. (2014) T220I no yes no -2.1 -7.4 HEK b no

Gui et al. (2010a) T220I yes yes -1 -5.6 HEK a* no

Gui et al. (2010b) T220I no yes -1.8 -6.4 HEK a* no

Beckermann et al. (2014) R222Q yes yes no -13.9 -6.7 HEK yes

Cheng et al. (2010) R222Q yes yes no -15.4 -8 HEK a no

Cheng et al. (2010) R222Q yes yes no -13.1 -4.2 HEK b no

Laurent et al. (2012) R222Q yes yes -11.7 -4 COS a yes

Mann et al. (2012) R222Q yes yes -6.3 -6.2 CHO yes

Nair et al. (2012) R222Q yes yes no -9 -7.3 CHO a no

Chen et al. (1996) R225E yes Ooc. a** no

Beckermann et al. (2014) R225P yes yes yes 0.2 -0.8 HEK yes

Beckermann et al. (2014) R225Q yes yes yes -2.9 -4.2 HEK yes

Chen et al. (1996) R225Q yes yes 4.7 5.8 Ooc. a** no

Bezzina et al. (2003) R225W yes yes no 14 11.1 Ooc. a* yes

Hoshi et al. (2014) R225W no -1.81 HEK a no

Watanabe et al. (2011a) A226D yes HEK yes

Neu et al. (2010) I230T yes yes 15.4 -4.9 HEK a* yes

Kapplinger et al. (2015) Q245K no no no -3.7 0.7 HEK b no

Calloe et al. (2011) Q270K yes yes yes 5.8 9.9 CHO b yes

Itoh et al. (2005a) R282H yes 5 5 HEK a* yes

Poelzing et al. (2006) R282H yes HEK a no

Shinlapawittayatorn et al. (2011b) R282H yes HEK a no

Shinlapawittayatorn et al. (2011b) G292S yes 7.3 HEK a no

Shinlapawittayatorn et al. (2011b) V294M 4.1 HEK a no

Saito et al. (2009) G298S no no HEK a no

Saito et al. (2009) G298S no no HEK b no

Wang et al. (2002) G298S no yes no 3.6 7.4 HEK a* yes

Shinlapawittayatorn et al. (2011b) K317N yes HEK a no

Keller et al. (2005) L325R yes yes 10.4 4.4 HEK b* yes

Shinlapawittayatorn et al. (2011b) L325R yes HEK a no

Cordeiro et al. (2006) P336L no no 1.7 -1.5 HEK yes

Olesen et al. (2012) R340Q yes yes no -6.2 -5.5 HEK no

Shinlapawittayatorn et al. (2011b) G351V yes HEK a no

Vatta et al. (2002a) G351V no no 0 2.1 Ooc. no

Guo et al. (2016) Y352C no yes 0 HEK a no

Pfahnl et al. (2007) T353I no yes yes 1 11 HEK b* no
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Publication Mutation Act. Inact. Late Zero ∆Va ∆Vi Cell α β1

Zhang et al. (2015) T353I yes yes yes -2.2 -6.32 HEK no

Shinlapawittayatorn et al. (2011b) D356N yes HEK a no

Hong et al. (2004) R367H yes HEK a* no

Shinlapawittayatorn et al. (2011b) R367H yes HEK a no

Vatta et al. (2002b) R367H yes Ooc. b no

Watanabe et al. (2011a) R367H yes HEK yes

Detta et al. (2014) R376C yes no 11.5 0 HEK a* yes

Detta et al. (2014) R376H no no 1.5 0 HEK a* yes

Frustaci et al. (2005) R376H yes HEK yes

Rossenbacker et al. (2004) R376H no no 0 0 HEK yes

Kapplinger et al. (2015) I397F yes yes yes -6.9 5.1 HEK b no

Kapplinger et al. (2015) I397F no yes yes 0.4 9.1 HEK a no

Hu et al. (2007) G400A no yes no 1.32 -6.39 HEK b* yes

Kato et al. (2014) N406K yes yes yes 8.6 2.9 CHO a* yes

Itoh et al. (2005b) N406S yes yes 15.9 9.6 HEK a* yes

Itoh et al. (2007) N406S yes no 2.7 HEK a* yes

Horne et al. (2011) V411M yes yes yes -8.1 -7.9 HEK no

Hoshi et al. (2014) E439K no -0.52 HEK a no

Crotti et al. (2012) E446K no yes -0.7 -6.2 HEK yes

Kapplinger et al. (2015) E462A no no no -2.6 1.2 HEK b no

Kapplinger et al. (2015) E462A no no no -2.2 0.9 HEK a no

Kapplinger et al. (2015) E462K no no no -1.9 -3 HEK b no

Holst et al. (2009) P468L no no -1.4 2.8 HEK no

Tan et al. (2005) R481W no yes no 1 -6 HEK b no

Tan et al. (2005) R481W no yes no -6 -4 HEK a no

Viswanathan et al. (2003) T512I yes yes -7.5 -8.7 HEK a* yes

Tan et al. (2001) G514C yes yes no 10.1 6.9 HEK no

Shuraih et al. (2007) S524Y no no -5 1.6 HEK b no

Tan et al. (2005) S524Y no no no -1 -2 HEK b no

Tan et al. (2005) S524Y no no no 3 3 HEK a no

Aiba et al. (2014) R526H no no -0.2 -0.5 HEK yes

Hoshi et al. (2014) R526H no -1.81 HEK a no

Aiba et al. (2014) S528A no no -2.2 0.4 HEK yes

Otagiri et al. (2008) F532C no no no 0 0 HEK yes

Chiang et al. (2009) A551E no 0 HEK yes

Chiang et al. (2009) A551T no yes 0 -5 HEK yes

Juang et al. (2014) A551T yes no -1.8 -1.4 HEK a yes

Chiang et al. (2009) A551V yes -4.7 HEK yes

Hoshi et al. (2014) G552R no -1.75 HEK a no

Hoshi et al. (2014) E555K no -2.68 HEK a no

Cheng et al. (2010) H558R no no no -0.9 -1 HEK a no

Cheng et al. (2010) H558R no no no -0.3 0.6 HEK b no

Gui et al. (2010b) H558R no no -1.7 -1.5 HEK a* no

Kauferstein et al. (2013) H558R no no 2.55 -1 Ooc. no

Murphy et al. (2012) H558R no no 5.1 -0.8 HEK a* no

Surber et al. (2008) H558R no no no 0.6 -2.2 Ooc. a* no

Tan et al. (2005) H558R no no no 0 -6 HEK b no

Tan et al. (2005) H558R yes HEK a no

Hoshi et al. (2014) L567Q no -0.43 HEK a no

Wan et al. (2001b) L567Q yes yes 7.1 -11.3 HEK yes

Kapplinger et al. (2015) R569G yes no no -7.1 0.7 HEK b no

Kapplinger et al. (2015) R569W no no no -1.3 0.7 HEK b no

Glynn et al. (2015) S571A no yes 0 MM yes

Glynn et al. (2015) S571E no yes 0 MM yes

Albert et al. (2008) A572D no yes -2.5 0.8 Ooc. a* yes

Tester et al. (2010) A572D no no no 0 -3 HEK b no

Albert et al. (2008) A572F no yes -3.8 -2.4 Ooc. a* yes

Juang et al. (2014) N592K yes no 3.2 1.2 HEK a yes

Albert et al. (2008) G615E no yes -3.4 1.7 yes

Beyder et al. (2014) G615E yes yes no 5.6 3.1 HEK b no

Yang et al. (2002) G615E no no no 0.5 2.4 HEK a* yes

Yang et al. (2002) L618F no no no -4.9 3.9 HEK a* yes

Wehrens et al. (2003) L619F no yes yes -0.1 5.8 HEK yes

Hoshi et al. (2014) R620C no -2.17 HEK a no

Kapplinger et al. (2015) R620C no yes no 0.5 2.3 HEK b no

Calloe et al. (2013) R620H no no 0 0 CHO b no

Kapplinger et al. (2015) P627L no no no -1.1 1 HEK b no

Beyder et al. (2014) T630M no yes no 1.5 1.3 HEK b no

Hoshi et al. (2014) T632M no -2.33 HEK a no

Hoshi et al. (2014) A647D no -1.06 HEK a no

Beyder et al. (2014) P648L no yes no 2 -0.5 HEK b no

Cheng et al. (2011) R680H no no yes 1.1 2.4 HEK b no

Cheng et al. (2011) R680H no no no -2.6 -1.5 HEK a no

Wang et al. (2007a) R680H no yes no -1.9 0.1 HEK b yes

Mok et al. (2003) H681P yes yes -9.5 -17.3 HEK yes

Sottas et al. (2013) R689C no no yes 0.1 -0.2 HEK yes

Hong et al. (2012) R689H yes no

Kapplinger et al. (2015) R689H yes yes no -5.2 -4.3 HEK b no

133



Predicting changes to INa from missense mutations in SCN5A

Publication Mutation Act. Inact. Late Zero ∆Va ∆Vi Cell α β1

Sottas et al. (2013) R689H no no yes -0.7 -0.6 HEK yes

Kapplinger et al. (2015) Q692K yes no no -2.2 -4.3 HEK b no

Kapplinger et al. (2015) Q692K no no no -1.1 2.3 HEK a no

Hoshi et al. (2014) P701L no -3.04 HEK a no

Vatta et al. (2002b) A735V yes yes 6.7 -0.1 Ooc. b no

Kapplinger et al. (2015) Q750R no no no 3.2 -1.6 HEK b no

Kapplinger et al. (2015) Q750R no yes no 0.3 -2.5 HEK a no

Potet et al. (2003) G752R yes COS no

Kapplinger et al. (2015) R800L no no no -1 0.9 HEK b no

Chen et al. (1996) R808H yes yes 6.3 0 Ooc. a** no

Chen et al. (1996) R808Q yes yes 13.3 8.2 Ooc. a** no

Calloe et al. (2013) R811H no yes -0.6 -8.4 CHO b no

Wang et al. (2015) L812Q no yes -0.33 -19.7 HEK a* no

Chen et al. (1996) R814E yes no 15.8 -2.4 Ooc. a** no

Chen et al. (1996) R814Q yes yes 0.4 -9.6 Ooc. a** no

Beckermann et al. (2014) R814W yes yes no -3.8 1.1 HEK yes

Nguyen et al. (2008) R814W yes yes -5.7 -2.9 HEK a* yes

Kinoshita et al. (2016) K817E yes yes 24 0.1 HEK a yes

David et al. (2012) L828F yes no -21.7 -8.4 no

Watanabe et al. (2011a) L846R yes HEK yes

Clatot et al. (2012a) R878C yes HEK no

Gui et al. (2010a) R878C yes HEK a* no

Gui et al. (2010b) R878C yes HEK a* no

Zhang et al. (2008) R878C yes HEK a* yes

Zhang et al. (2008) R878C yes HEK a* no

Zhang et al. (2008) R878C yes Ooc. a* no

Zhang et al. (2008) R878K yes HEK a* no

Tarradas et al. (2013) I890T yes no no 4.7 0.7 HEK a* no

Kapplinger et al. (2015) G897E yes HEK b no

Wang et al. (2007b) N927K yes yes -7.1 HEK a* yes

Ruan et al. (2007) S941N no no yes -0.6 -0.3 HEK yes

Schwartz et al. (2000) S941N yes Ooc. b* no

Hsueh et al. (2009) R965C no yes 1.45 -9.4 HEK a yes

Hoshi et al. (2014) R965H no -0.3 HEK a no

Hayashi et al. (2015) R986Q no no 1.3 -0.2 CHO yes

Beyder et al. (2014) A997T yes yes no 19.6 6.2 HEK b no

Hu et al. (2010) P1008S no no 1.37 HEK yes

Frustaci et al. (2005) R1023H no yes 3.4 2.5 HEK yes

Hoshi et al. (2014) R1023H no 2.25 HEK a no

Hoshi et al. (2014) E1053K no 3.71 HEK a no

Mohler et al. (2004) E1053K yes yes -8.3 -4.7 HEK a* yes

Otagiri et al. (2008) G1084S yes yes no 1.5 -5.5 HEK yes

Juang et al. (2014) P1090L no no -0.5 -1.5 HEK a yes

Tan et al. (2005) P1090L yes no no -5 -4 HEK b no

Tan et al. (2005) P1090L no no no 1 3 HEK a no

Cheng et al. (2011) S1103Y yes no no 1.8 6.3 HEK b no

Cheng et al. (2011) S1103Y no yes no -1.6 -2.6 HEK a no

Splawski et al. (2002) S1103Y yes no yes -4.5 0 HEK b no

Tan et al. (2005) S1103Y yes yes no -3 -3 HEK b no

Tan et al. (2005) S1103Y yes yes no 5 6 HEK a no

Hoshi et al. (2014) A1113V no -0.78 HEK a no

Hoshi et al. (2014) S1140T no -3.05 HEK a no

Beyder et al. (2014) G1158S no yes no 3.2 -3.3 HEK b no

Winkel et al. (2012) P1177L no no yes 0.2 -1.5 HEK no

Ge et al. (2008) A1180V no yes yes 1.4 -4.4 HEK a yes

Huang et al. (2006) R1193Q no yes yes 2 -5.2 HEK no

Tan et al. (2005) R1193Q no no no -1 -2 HEK b no

Tan et al. (2005) R1193Q yes yes no -6 -5 HEK a no

Vatta et al. (2002b) R1193Q no yes 0 3.9 Ooc. b no

Wang et al. (2004) R1193Q no yes yes 0 -6 HEK a no

Medeiros-Domingo et al. (2009) R1195H yes yes no -9.2 -10 HEK b no

Albert et al. (2008) W1206C no no -2.6 0.8 Ooc. a* yes

Calloe et al. (2013) S1218I yes CHO b no

Yang et al. (2002) F1250L no no no 7.5 6.2 HEK a* yes

Groenewegen et al. (2003b) D1275N no no 3.36 -0.7 Ooc. a* yes

Groenewegen et al. (2003b) D1275N yes yes 3.8 -4.05 Ooc. a* no

Gui et al. (2010a) D1275N yes yes 3.1 1.8 HEK a* no

Gui et al. (2010b) D1275N yes yes 3 1 HEK a* no

Hoshi et al. (2014) D1275N no -0.84 HEK a no

Watanabe et al. (2011c) D1275N no no 0.7 -3.9 CHO a no

Watanabe et al. (2011c) D1275N yes no 12 1.4 HEK a yes

Watanabe et al. (2011c) D1275N no yes yes -1.5 7.6 MM no

Abriel et al. (2001) E1295K yes yes 2.9 5.2 HEK a* yes

Liu et al. (2002) E1295K yes yes 3.4 5.2 HEK a* yes

Gui et al. (2010a) P1298L no yes -0.5 -8.9 HEK a* no

Gui et al. (2010b) P1298L no yes -1.4 -10.1 HEK a* no

Chen et al. (1996) K1300H yes yes 0.3 -13.1 Ooc. a** no

Chen et al. (1996) K1300Q yes yes -10.4 -21 Ooc. a** no
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Beyder et al. (2014) T1304M no no no -0.3 0.6 HEK b no

Kapplinger et al. (2015) T1304M no no no -3.5 -0.7 HEK b no

Wang et al. (2007a) T1304M yes yes yes 6.7 11.2 HEK b yes

Chen et al. (1996) R1306E yes yes -2.1 -21.8 Ooc. a** no

Chen et al. (1996) R1306Q yes yes 5.9 -10.6 Ooc. a** no

Wang et al. (2016) R1309H yes yes yes 4.5 -6.2 HEK yes

Casini et al. (2007) G1319V yes yes no 3.7 -6 HEK yes

Hoshi et al. (2014) G1319V no -1.92 HEK a no

Kapplinger et al. (2015) M1320V no no no 0.7 2.4 HEK b no

Wang et al. (1996) N1325S yes yes yes -6.4 -2.5 HEK a* no

Yong et al. (2007) N1325S no yes yes 0 7.1 no

Wedekind et al. (2001) A1330P no yes no -1.5 8.3 HEK a* yes

Smits et al. (2005b) A1330T no yes no 2.4 6.9 HEK a* yes

Ruan et al. (2007) P1332L yes yes no -5 -6.4 HEK yes

Huang et al. (2009) S1333Y yes yes yes -8.5 7 HEK a* yes

Samani et al. (2009) V1340I no no -1.1 3.6 HEK b yes

Samani et al. (2009) V1340I yes HEK a yes

Keller et al. (2006) F1344S yes yes 9.7 -0.65 HEK yes

Kyndt et al. (2001) G1406R yes Ooc. a* no

Kyndt et al. (2001) G1406R yes Ooc. a* yes

Tan et al. (2006) G1406R no yes no 1.9 -10.5 HEK a no

Tan et al. (2006) G1406R no yes no 3.4 -6.3 HEK b no

Gui et al. (2010a) G1408R yes HEK a* no

Gui et al. (2010b) G1408R yes HEK a* no

Baroudi et al. (2001) R1432C yes HEK a* yes

Baroudi et al. (2001) R1432G yes HEK a* yes

Baroudi et al. (2001) R1432G no no 0 0 Ooc. a* yes

Deschênes et al. (2000) R1432G yes HEK a* no

Baroudi et al. (2001) R1432H yes HEK a* yes

Baroudi et al. (2001) R1432K no no -4.94 0.2 HEK a* yes

Six et al. (2008) P1438L yes HEK yes

Sarhan et al. (2009) F1473A yes 14.8 HEK a no

Bankston et al. (2007b) F1473C no yes yes -2.4 8.8 HEK a* yes

Ruan et al. (2010) F1473S yes yes yes -18.9 -4.4 HEK yes

Moreau et al. (2013) Q1476R no yes yes 1.6 6.5 HEK a* yes

Kapplinger et al. (2015) I1485V no yes no -2.5 6.8 HEK b no

Wang et al. (2007a) F1486L yes yes yes 3.7 14.3 HEK b yes

Li et al. (2009) K1493R no yes no -1.58 5.13 HEK no

Sarhan et al. (2009) Y1494A yes 7.9 HEK a no

Sarhan et al. (2009) Y1495A no 2.6 HEK a no

Hoshi et al. (2014) L1501V no 0.19 HEK a no

Hoshi et al. (2014) G1502S yes -7.18 HEK a no

Saber et al. (2015) P1506S yes yes 9 -14 HEK yes

Beyder et al. (2014) R1512Q no no no 2.9 3 HEK b no

Deschênes et al. (2000) R1512W no yes 0.9 2.6 HEK a* no

Rook et al. (1999) R1512W yes yes -5.1 -3.8 Ooc. a* no

Sarhan et al. (2009) F1520A no 1.1 HEK a no

Sarhan et al. (2009) F1522A no -0.6 HEK a no

Nguyen et al. (2008) D1595H no yes -0.3 -6.8 HEK a* yes

Wang et al. (2002) D1595N no yes no -1.3 4.2 HEK a* yes

Surber et al. (2008) T1620H no yes -0.03 1.26 Ooc. a* no

Surber et al. (2008) T1620K yes yes yes -5.8 -4.14 Ooc. a* no

Baroudi et al. (2000) T1620M no yes no 0 0 HEK a* yes

Baroudi et al. (2000) T1620M no yes no 0 9.6 Ooc. a* yes

Shirai et al. (2002) T1620M yes yes 6.8 13.1 HEK a* no

Wang et al. (2000) T1620M no yes 0 6.2 HEK a* yes

Surber et al. (2008) T1620R yes yes -6.56 -13.5 Ooc. a* no

Chen et al. (1996) R1623H yes yes -2.4 -0.9 Ooc. a** no

Chen et al. (1996) R1623Q yes yes 2.3 4.7 Ooc. a** no

Kambouris et al. (2000) R1623Q yes 0 -7.2 Ooc. yes

Makita et al. (1998) R1623Q no yes yes -1.4 Ooc. a* no

Tsurugi et al. (2009) R1623Q no no no -0.9 -3.8 HEK no

Olesen et al. (2012) R1626H yes yes yes 4.4 -5.6 no

Ruan et al. (2007) R1626P no yes yes -3.1 -7.1 HEK yes

Chen et al. (1996) R1629E yes yes 6.7 -3.7 Ooc. a** no

Chen et al. (1996) R1629Q yes yes 8.6 -57.5 Ooc. a** no

Zeng et al. (2013) R1629Q no yes 2.3 -20.6 HEK yes

Wang et al. (2008) G1631D yes yes yes 7.8 14.5 HEK a* yes

Nakajima et al. (2015) R1632C no yes no -2.2 -24.8 HEK b yes

Gui et al. (2010a) R1632H no yes -1.4 -20.7 HEK a* no

Gui et al. (2010b) R1632H no yes -2.4 -22 HEK a* no

Frustaci et al. (2005) R1644C yes yes 8.48 -1 HEK yes

Wang et al. (1996) R1644H no yes yes 1.7 2.1 HEK a* no

Ruan et al. (2007) M1652R no yes yes 0.7 7.6 HEK yes

Cordeiro et al. (2006) I1660V yes HEK yes

Núñez et al. (2013) D1690N no no no 4.7 3.2 CHO a* yes

Otagiri et al. (2008) F1705S yes yes no -1 -17 HEK yes

Akai et al. (2000) S1710L yes yes 17.7 -24.3 HEK a* yes
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Shirai et al. (2002) S1710L yes yes 18.7 -21.7 HEK a* no

Amin et al. (2005) D1714G no yes 1.9 1.9 HEK yes

Baroudi et al. (2004) G1740R yes HEK no

Valdivia et al. (2004) G1743R yes HEK b no

Núñez et al. (2013) G1748D yes yes no 13.4 13.8 CHO a* yes

Chang et al. (2004) I1762A no yes no 4.1 11.8 HEK yes

Chang et al. (2004) V1763M yes yes yes -3.8 11.5 HEK yes

Chang et al. (2004) V1764M no yes yes -0.7 6 HEK yes

Valdivia et al. (2002) M1766L no yes yes 7 9 HEK b* yes

Groenewegen et al. (2003a) I1768V no yes no 0.7 0.9 Ooc. a* no

Kauferstein et al. (2013) I1768V yes yes -6.7 -1.1 Ooc. no

Rivolta et al. (2002) I1768V no yes no 0 7.6 HEK yes

Kato et al. (2014) N1774D yes yes yes -7.9 -0.9 CHO a* yes

Lupoglazoff et al. (2001) V1777M yes yes yes -8.99 -12.4 HEK yes

Kapplinger et al. (2015) T1779M no yes no -3.1 -3.6 HEK b no

Beyder et al. (2014) E1780G no yes no 3.6 2.1 HEK b no

Deschênes et al. (2000) E1784K yes yes yes 8.8 -14.4 HEK a* no

Hu et al. (2014) E1784K no yes yes 0 -18.4 HEK b no

Makita et al. (2008) E1784K yes yes yes 12.5 -15 HEK yes

Wei et al. (1999) E1784K yes yes -12.1 Ooc. a* yes

Hu et al. (2015) S1787N no no yes -1 1 HEK b no

Hu et al. (2015) S1787N no no no -1 -1 HEK a no

Abriel et al. (2000) D1790G yes -15.6 HEK a* yes

An et al. (1998) D1790G no no no 0 -2.9 HEK a* no

An et al. (1998) D1790G no yes no 0 -16.3 HEK a* yes

Baroudi and Chahine (2000) D1790G yes yes yes 5.36 -14.6 HEK a* yes

Liu et al. (2002) D1790G no yes 1.4 -10.2 HEK a* yes

Liu et al. (2003) D1790G yes yes 8.49 -22.3 HEK no

Wehrens et al. (2000) D1790G yes yes no 6 -15 HEK a* no

Liu et al. (2002) Y1795C no yes -1 -2.8 HEK a* yes

Rivolta et al. (2001) Y1795C no yes yes -1 -10.5 HEK yes

Tateyama et al. (2003) Y1795C yes yes 0 -11 HEK yes

Liu et al. (2002) Y1795E no yes 1.7 -10.4 HEK a* yes

Liu et al. (2002) Y1795H no yes 0.9 -10.5 HEK a* yes

Rivolta et al. (2001) Y1795H no yes yes 1.1 -10.9 HEK yes

Tateyama et al. (2003) Y1795H yes yes 0 -11 HEK yes

Liu et al. (2002) Y1795R no yes 2.1 -10.6 HEK a* yes

Kapplinger et al. (2015) D1819N no no no -1.9 -0.9 HEK b no

Olesen et al. (2012) D1819N no yes yes 0.1 0.2 HEK no

Liu et al. (2005) L1825P no yes yes 0 -7.3 CHO b no

Makita et al. (2002) L1825P yes yes yes 8.9 -11 HEK a* yes

Cheng et al. (2010) I1836T no no no 0.5 0.5 HEK a no

Cheng et al. (2010) I1836T no no no 0.4 1.7 HEK b no

Musa et al. (2015) H1849R no yes -0.5 -6.7 HEK no

Petitprez et al. (2008) C1850S no yes 1.4 -11.6 HEK b* yes

Beyder et al. (2014) A1870D no yes no 0.6 -1.1 HEK b no

Makiyama et al. (2008) M1875T no yes no -0.48 16.4 HEK a* yes

Beyder et al. (2014) L1896V no no no 0.5 -2.6 HEK b no

Olesen et al. (2012) R1897W no yes no -1.6 -6.2 HEK no

Bankston et al. (2007a) S1904L no yes yes -1.3 -4.9 HEK yes

Glaaser et al. (2012) S1904L no yes 0.6 HEK no

Rook et al. (1999) A1924T yes no -9 -0.2 Ooc. a* no

Tan et al. (2002) A1924T no yes HEK a* no

Hoshi et al. (2014) E1938K no -0.96 HEK a no

Shinlapawittayatorn et al. (2011a) V1951L yes no 8.8 HEK a no

Tan et al. (2005) V1951L no no no -1 3 HEK b no

Tan et al. (2005) V1951L no no no 0 -2 HEK a no

Wang et al. (2007a) V1951L no yes no -1.6 1.8 HEK b yes

Olesen et al. (2012) V1951M no no no -3.6 0 HEK no

Beyder et al. (2014) M1952T no no no 0.2 4 HEK b no

Frustaci et al. (2005) I1968S no yes 0 -0.3 HEK yes

Ellinor et al. (2008) N1987K no yes no -1.3 -3.4 Ooc. a* yes

Bébarová et al. (2008) F2004L yes yes yes 3.3 -7.5 CHO a no

Wang et al. (2007a) F2004L no yes yes 0.7 4.7 HEK b yes

Shinlapawittayatorn et al. (2011a) P2006A yes yes 10.6 HEK a no

Wang et al. (2007a) P2006A no yes yes -0.2 4.7 HEK b yes

Chen et al. (2016) V2016M yes no no 0.8 -1.8 HEK yes

Shy et al. (2014) V2016M yes no 3.7 1.9 HEK no
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Abstract

The inverse problem of electrocardiography aims at noninvasively reconstructing electrical

activity of the heart from recorded body-surface electrocardiograms. A crucial step is regu-

larization, which deals with the ill-posedness of the problem by imposing constraints on the

possible solutions. We developed a regularization method that includes electrophysiological

input. Body-surface potentials are recorded and a computed tomography scan is performed

to obtain the torso-heart geometry. Propagating waveforms originating from several positions

at the heart are simulated and used to generate a set of basis vectors representing spatial

distributions of potentials on the heart surface. The real heart-surface potentials are then

reconstructed from the recorded body-surface potentials by finding a sparse representation in

terms of this basis. This method, which we named ‘physiology-based regularization’ (PBR),

was compared to traditional Tikhonov regularization and validated using in vivo recordings in

dogs. PBR recovered details of heart-surface electrograms that were lost with traditional reg-

ularization, attained higher correlation coefficients and led to improved estimation of recovery

times. The best results were obtained by including approximate knowledge about the beat

origin in the PBR basis.
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Chapter 7

7.1 Introduction

Cardiac arrhythmias are amongst the leading causes of death worldwide. The 12-lead elec-

trocardiogram (ECG) is a well-established, patient-friendly, quick, reproducible, and cheap

tool to determine normal cardiac activation and recovery, to diagnose cardiac arrhythmias,

altered activation, ischemia, infarction, primary electrical abnormalities of the heart, struc-

tural disease, metabolic disorders, electrolyte imbalance, and other conditions. It reflects

the attenuated and dispersed result of propagated electrical activity and recovery in the

heart on the body surface.

However, it lacks the capacity to directly assess electrical activity at the level of the heart

muscle at high resolution. Electrocardiographic imaging (ECGI) aims at noninvasively re-

constructing the electrical activity of the heart, based on body-surface potential measure-

ments and a patient-specific torso-heart geometry (Rudy and Messinger-Rapport, 1987; Ra-

manathan et al., 2004; van Oosterom, 2012a,b; Cluitmans et al., 2015b). This is achieved

by solving what is known as the inverse problem of electrocardiography. In the last decades

much progress has been made in ECGI, and clinical applications are published with in-

creasing frequency, yet the accuracy of the reconstructed electrical heart activity is still

suboptimal. This is partly due to the ill-posedness of the inverse problem: small variations

(noise) in the input data will yield unique but unrealistic variations in the reconstructions

(Cluitmans, 2016). To cope with this problem, regularization is applied, i.e., additional

knowledge is incorporated in the form of constraints on the possible solutions to attain more

realistic results. Such constraints are often based on physical or mathematical properties of

the problem (MacLeod and Brooks, 1998; Pullan et al., 2005), but the use of electrophysio-

logical properties has also been proposed (He et al., 2003; Ghodrati et al., 2006; Wang et al.,

2010; Lopez-Rincon et al., 2015).

In a previous study (Cluitmans et al., 2014), we have shown that it may be beneficial to also

include simulated electrophysiological input in the reconstruction process, using a method

we call physiology-based regularization (PBR). In this method, propagating waveforms orig-

inating from several positions on the heart are simulated and used to generate a set of

basis vectors representing spatial distributions of potentials on the heart surface. The real

heart-surface potentials are then reconstructed from the recorded body-surface potentials as

a sparse linear combination of these ‘building blocks’ on the heart surface. In other words,

this new method decomposes the simulated heart-surface potential patterns into basis vec-

tors which span the space of heart-surface potentials, and then solves the inverse problem

by pursuing a sparse representation of the heart-surface potentials in terms of this basis.

In this manuscript, we provide a detailed description of PBR and use in vivo recordings

to assess its performance. We investigate whether PBR can improve reconstructions of

epicardial ventricular potentials, specifically with the goals of detecting the origin of ectopic

beats and imaging substrates for arrhythmias.
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7.2 Methods

The potential-based formulation of the forward/inverse problems of electrocardiography is

based on the assumption that there is a direct relation between potentials on a closed

surface surrounding the heart, and the body surface (Pullan et al., 2005). The closed surface

surrounding the heart is usually taken to be the epicardium, i.e., the outer myocardial layer.

The forward problem can then be defined as:

ΦB(t) = AΦH(t) (7.1)

where ΦB(t) are the potentials on the body surface at a specific time instant t, ΦH(t) the

potentials on the heart surface, and A is the transfer matrix that relates these vectors. The

transfer matrix captures the geometry and conductivity relation between the surfaces. It is

assumed that the problem is quasi-static, that the torso volume is source-free, and that the

transfer matrix is therefore time-independent.

The goal of the inverse problem is to find the cardiac potentials ΦH(t) from the recorded

body-surface potentials ΦB(t) and a patient-specific transfer matrix A, usually based on a

computed tomography (CT) scan. However, small variations in the body-surface potentials

(e.g. due to noise) will result in disproportionately large changes in the computed cardiac

potentials. In other words, the computed solution of the inverse problem does not depend

continuously on the data and the problem is, therefore, ill-posed. Additional constraints

are needed to obtain a stable, regularized solution. For example, the well-known Tikhonov

method obtains a stable solution by placing bounds on the amplitude of the reconstructed

cardiac potentials (or derivatives thereof) with a least-squares minimization at time t:

min
ΦH(t)

{
‖AΦH(t)− ΦB(t)‖22 + λ(t) ‖RΦH(t)‖22

}
(7.2)

where R is the regularization operator (the identity matrix for zeroth order, the gradient

operator for first order, or the Laplacian for second order regularization). The regulariza-

tion parameter λ(t) balances the quality of fit with the amount of regularization and can

be determined with methods such as the L-curve. Recent papers review these and other

regularization methods (Pullan et al., 2005; Milanič et al., 2014).

PBR is a regularization method that constrains the solutions based on patient-specific elec-

trophysiology simulations. It is illustrated schematically in Fig. 7.1.A. First, as in regular

ECGI, body-surface potentials are recorded (Section 7.2.1) and a CT scan is performed from

which both a digitization of the heart-surface geometry and the location of the body-surface

electrodes are obtained (Section 7.2.2). Next, simulations of propagating action potentials

(APs) originating from different points on the digitized epicardium are run (Section 7.2.3).

Singular value decomposition (SVD) is applied to the combined simulated patterns of epi-

cardial APs, and truncation is applied to arrive at a small set of basis vectors representing
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Figure 7.1: Schematic representation of physiology-based regularization (Panel A) and its validation in an
in vivo canine model (panel B). Panel C1: Body-surface electrodes (blue), ventricular epicardium (green)
and epicardial electrodes (red) in the canine experiment. Panel C2: Simulated potentials on the epicardium.
Taking the singular value decomposition (SVD) of many (morphologically distinct) simulated beats yields a
realistic basis of electrophysiologically relevant solutions that will be used to reconstruct epicardial potentials.

spatial distributions of potentials on the heart (Section 7.2.4). The real epicardial potentials

are then reconstructed as sparse combinations of these vectors (Section 7.2.5).

By the nature of SVD, the resulting basis vectors span the space of simulated AP patterns

on the heart surface. We assume that the simulated APs form a good surrogate for potential

patterns that could be expected on a human heart, so that their basis vectors form a suitable

basis for reconstruction of true heart-surface potentials. Furthermore, by aiming for a sparse

representation in terms of this basis, we aim to further reduce the influence of ill-posedness.

Crucially, although a basis might contain only a few vectors, the space they span contains

all linear combinations of these vectors and so is vast. Therefore, we hypothesize that a

limited number of simulated beats can already provide a basis from which a huge number

of electrophysiologically realistic potential patterns can be reconstructed, including many

patterns not encountered in any of the simulations. An example of a 9-vector basis is shown

in Fig. 7.1.C.

To validate this method, we performed in vivo measurements of the epicardial potentials

in three normal, anesthetized dogs, while simultaneously recording potentials at the body-

surface. This is illustrated in Fig. 7.1.B and Fig. 7.1.C.

7.2.1 In vivo recordings

In vivo data was acquired in experiments with anesthetized dogs. This investigation con-

formed to the Guide for the Care and Use of Laboratory Animals published by the United
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States National Institutes of Health (National Institutes of Health Publication 85-23, revised

1996). Animal handling was in accordance with the European Directive for the Protection

of Vertebrate Animals Used for Experimental and Other Scientific Purposes (86/609/EU)

and was approved by the institutional review committee for animal studies.

In three normal anesthetized dogs, two silicone bands with 99 electrodes were implanted

around the basal and mid-basal epicardium after thoracotomy (Cluitmans et al., 2017).

Each band consisted of two rows of electrodes, and an additional electrode was placed on

the LV apical epicardium. After chest closure, body-surface electrodes (184 to 216, depend-

ing on torso size) were attached to the chest (ActiveTwo setup, BioSemi, Amsterdam, the

Netherlands). This number of body-surface electrodes is more than sufficient to obtain a

good reconstruction with traditional methods (Cluitmans et al., 2015a). Unipolar poten-

tial recordings were obtained simultaneously by the epicardial and body-surface electrodes.

Beats were recorded during normal sinus rhythm or with epicardial pacing from electrodes

on the left ventricle (LV) or right ventricle (RV).

7.2.2 Torso-heart geometry

A CT scan was performed and used to digitize a homogeneous geometry consisting of the

body-surface electrodes and the epicardial surface. Segmentation of the surfaces from CT

scans was performed manually with Seg3D (CIBC, 2015). The ventricular epicardium was

digitized as a triangulated mesh with approximately 1700 nodes and the position of the 103

implanted electrodes was recorded. The septum was not included in this segmentation. The

transfer matrix, relating the electrical activity on the cardiac surface to the body surface, was

computed with methods available from the SCIrun software repository (Burton et al., 2011)

and was based on a boundary-elements method. In one dog a three-dimensional digitization

of the entire ventricular myocardium (including septum) was created in addition to that of

the epicardial surface. This digitization had a much finer resolution, with grid points spaced

0.5mm apart in all three directions.

7.2.3 Simulation of epicardial potentials

Computational models of the AP were used to simulate waveform propagation over the

digitized ventricular myocardium. To see the influence of the AP model used, we ran simu-

lations with three different models: a neuronal model (FHN, FitzHugh, 1961), a mammalian

ventricular model (LR92, Luo and Rudy, 1991), and a human ventricular model (TNNP,

ten Tusscher and Panfilov, 2006).

Simplified simulations. For our main results, we used fast simulations on a coarse mesh

representing the ventricular epicardial surface. The potential at each node in the mesh was

modeled using one of the three single-cell AP models mentioned above. Currents between
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Figure 7.2: Example of the origins of 50 simulated beats on the LV (green), the RV (red), and other locations
(blue); and invasive pacing locations (black). Note that the simulated origins generally don’t match with
the invasive pacing locations.

the nodes were introduced as I = g∆V for every two nodes connected in the triangulation.

The node-to-node conductance g was set as g = ḡ/d2 where d is the distance between the

nodes and ḡ is a parameter that can be manipulated to adjust the speed of propagation.

In this simplified approach, we assumed conduction was the same in all directions, and did

not vary from node to node. Because PBR uses spatial but not temporal characteristics

of the simulated waveforms, the exact timing of AP propagation is not important as long

as the resulting data set contains realistic spatial patterns. To obtain these, we set ḡ to a

value that reproduced the main characteristics of ventricular activation and recovery, i.e.,

in chronological order: a propagating front of activation, fully activated ventricles, a wave

of recovery, and fully recovered ventricles. These simulations were performed using Myokit,

our toolkit for AP model development and simulation (see Chapter 3).

Beat origins. We performed simulations for each dog, with simulated beats originating

from several, unique locations. Locations were chosen in three areas: (1) on the LV free wall,

(2) on the RV free wall, and (3) at the base or apex of the ventricles (where no pacing was

performed during the in vivo experiment). Origin locations within these areas were chosen

pseudo-randomly, and inspected visually for a roughly uniform equidistant distribution. A

single beat was simulated per origin. Where not stated otherwise, the reconstructions in

this manuscript used beats from 50 origins per region. Fig. 7.2 shows an example of the

origins of simulated beats.

Detailed simulations The method described above is a heuristic method, which is not

guaranteed to provide the same accuracy as more advanced techniques such as finite-element

methods using the monodomain or bidomain equations (although they are based on the same

physical principles). In addition, the mesh used for these simulations was rather coarse com-
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pared to the mesh size typically used for ‘whole-heart’ simulations. To validate the applica-

bility of this simplified method for PBR, we performed additional detailed simulations for

one of the dogs and compared the results. In these simulations, a fine-grained, regular, rect-

angular mesh was used, representing the entire ventricular myocardium, including the left,

right, and septal walls. Propagation was then simulated by solving the monodomain equa-

tions using a finite-difference approximation and assuming zero-flux boundary conditions.

Again, conduction in the myocardium was assumed to be homogeneous and isotropic, as no

knowledge of the fiber direction was available. In these detailed monodomain simulations,

29 origins per region were used. For accurate comparison with the simplified simulations,

regions were defined as before, with all beats originating from the epicardium of the free

walls (never from the endocardium or septum). The simulations were performed using a

parallelized monodomain solver (Vandersickel et al., 2016) and the TNNP model of the AP.

7.2.4 Creation of a realistic basis

For each dog and model, the heart-surface APs of all simulated beats were concatenated in

a single potential matrix ΦH . The number of rows in this matrix was equal to the number

of heart-surface nodes, and the number of columns equaled the number of simulated beats

(typically 50) times the number of time steps per beat (typically 550). This combined set of

APs, reflecting a diversity of activation and recovery patterns, was then decomposed using

singular value decomposition (SVD):

ΦH = UDV T (7.3)

Here the columns of U form a spatial basis for the simulated beats, the columns of V form a

temporal basis, and the diagonal matrix D represents the corresponding singular values. The

entries in D were ordered in non-increasing order, i.e., with the largest singular values first.

Each singular value can be interpreted as a weight, where a small value indicates a small

contribution of the corresponding spatial and temporal patterns to describing the overall

data. A truncated spatial basis Uk was created by keeping only the k most influential

elements. These capture the most prominent spatial patterns underlying the simulated

potentials. Truncated bases can be beneficial as they leave fewer possibilities for ill-posed

influences that could result in unrealistic solutions.

7.2.5 Sparse reconstruction of epicardial potentials

Assuming that Uk can be used as a basis for the epicardial potentials at any time t, there

should be a vector β(t) such that

ΦH(t) = Ukβ(t) (7.4)
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and our forward problem becomes

ΦB(t) = AUkβ(t) (7.5)

By using the truncated basis Uk instead of the full basis U , the reconstruction is constrained

to only those elements of U that contain the most relevant physiological information. Re-

construction of epicardial potentials in terms of this new basis can then be achieved by

Lasso regularization (Tibshirani, 1996). This is a form of least squares approximation that

minimizes the least squares error of the direct solution ||AUkβ(t) − ΦB(t)||22 while at the

same time requiring ||β||1 to be smaller than a given parameter λ(t):

min
β(t)

{
‖AUkβ − ΦB(t)‖22

}
subject to ||β(t)||1 ≤ λ(t) (7.6)

This minimization can be solved for each time instant t independently. The resultant β(t)

can then be plugged into equation 7.4 to obtain the heart-surface potentials at time t.

L1-norm penalties have previously been shown to give more accurate results than commonly

used L2-norms (Ghosh and Rudy, 2009). Constraining the L1-norm of the parameter vector

β(t) tends to produce only a few nonzero coefficients in β(t), leading to a sparse represen-

tation of the epicardial potentials. In other words, only the most important elements of

the truncated basis will be used in the reconstruction of the epicardial potentials. As this

basis consists only of well-defined spatial potential patterns, we expected that this approach

would reduce the influence of ill-posedness. We used MATLAB to solve this Lasso problem,

choosing λ(t) such that the mean square error was minimized.

We reconstructed beats with bases generated from simulated beats originating from all

regions of the heart for all three AP models (FHNall, LR92all and TNNPaall). For beats

paced at the LV or RV we compared these results to reconstructions based only on simulated

beats originating from the appropriate region (FHNspec, LR92spec and TNNPaspec). In one

dog, reconstructions were performed using a generic and a region-specific basis based on

detailed monodomain simulations (TNNPball and TNNPbspec).

7.2.6 Post-processing

Activation and recovery times were determined from reconstructed electrograms with two

different methods: a temporal-only method and a spatiotemporal method. The temporal-

only approach defines the moment of activation as the moment of steepest voltage downslope

(maximum −dΦH/dt) during the QRS complex. Recovery times were defined as the moment

of maximum dΦH/dt during the T wave. The spatiotemporal approach, proposed by Erem

et al. (2011), takes advantage of the spatial relationship between neighboring nodes and

their potentials, and could be better suited to estimate the activation time in noisy or

fractionated electrograms. Erem et al. noted that not only the temporal signal (i.e., the local

potential at a single node) changes quickly when an activation wavefront passes, but also the
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spatial gradient of potentials between neighboring nodes. Their approach to activation-time

estimation selects the moment at which the change in temporal derivative coincides with

the change in spatial derivative. More formally, for each epicardial node, they define the

activation time τ as:

τ = min
t
‖DΦH(t)‖2 ·

∂ΦH(t)

∂t
(7.7)

where ΦH(t) is the potential at the epicardial node under consideration at time t, DΦH(t)

is the approximated spatial gradient, and ∂ΦH/∂t the approximated temporal derivative.

7.2.7 Statistical evaluation

For each epicardial electrode, Pearson’s correlation coefficient (CC) was computed between

the recorded electrogram and the reconstructed electrogram at the corresponding (clos-

est) virtual epicardial node. Linear correlation between recorded and reconstructed activa-

tion/recovery timings was assessed by means of Pearson’s correlation coefficient. Results

were statistically compared with Wilcoxon signed-rank tests (for paired measurements) or

Wilcoxon rank-sum tests (for unpaired measurements).

Note that we only compare morphology, not absolute error, as the amplitude of the re-

constructed potentials depends on the amount of regularization (especially with Tikhonov

zeroth-order regularization, which constrains the amplitude explicitly). Moreover, morphol-

ogy is usually of much more clinical significance, as it contains information about the order

and timing of activation and recovery, and can indicate local tissue abnormalities (e.g.,

fractionation, ST segment deviation). We did not restrict our evaluation to comparing cor-

relation coefficients of morphology, but also considered clinically relevant parameters such

as activation timing, recovery timing, and beat-origin localization.

7.3 Results

Fig. 7.3 shows examples of recorded and reconstructed electrograms for a sinus beat and

a paced beat in one dog. Electrograms were reconstructed with PBR using different AP

models, and with traditional zeroth-order Tikhonov regularization for comparison. These

examples show that, regardless of the AP model, all PBR-methods were able to recover some

of the electrogram characteristics that were lost with Tikhonov regularization, for example

the negative deflection in electrogram 1 and 2, and the positive deflection in electrogram 7.

There were no significant changes between the different models used in PBR.
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Figure 7.3: Ventricular epicardium (left, colored according to noninvasively reconstructed activation times)
and recorded and reconstructed electrograms (right) during a sinus beat (panel A) and an LV paced beat
(panel B, pacing location indicated by blue sphere). White circles represent the implanted epicardial elec-
trodes. For selected electrodes (purple, numbered) the corresponding electrograms are shown: recorded
(red), Tikhonov-reconstructed (blue) and electrograms reconstructed with PBR for three different basis
types (FHN, LR92 or TNNPa). The numbers next to the electrograms indicate the correlation coefficient
with the invasively recorded signal.

In Fig. 7.4, quality of reconstruction is shown for all beats. Data were analyzed for all

three dogs, for 88 beats in total (of which 67 were epicardially paced, while 21 followed

native sinus rhythm) and for 5203 epicardial electrogram pairs (recorded vs reconstructed).

Results are shown for traditional regularization with Tikhonov, and for PBR using the full

bases (FHNall, LR92all and TNNPaall), and using region-specific bases (FHNspec, LR92spec

and TNNPaspec). Fig. 7.4.A shows that the correlation between recorded and reconstructed

electrograms increased significantly for 5 out of 6 PBR models. This indicates that more

details were recovered by the PBR methods when compared to Tikhonov regularization, as

expected from Fig. 7.3.
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Table 7.1: Effect of More Complex AP Model.

Model CCEGM Ract Rrec LE (mm)
Tikh 0.81 0.8 0.58 39
FHNall 0.85* 0.77 0.62* 44*
LR92all 0.83* 0.77 0.59 42
TNNPaall 0.84* 0.77 0.60* 47*
TNNPball 0.84* 0.77 0.62* 45
FHNspec 0.87* 0.78 0.79* 39
LR92spec 0.87* 0.78 0.69* 39
TNNPaspec 0.87* 0.78 0.79* 39
TNNPbspec 0.87* 0.78 0.76* 40

Median accuracy metrics in one dog (39 recorded beats), investigating the added value of a detailed whole
heart model (TNNPb). *, statistically significant difference with Tikhonov results. Activation and recovery
times (and beat origins) determined from temporal-only criteria. LE: localization error, i.e., the distance
between the known pacing location and reconstructed location of earliest activation.

In Fig. 7.4.B, activation and recovery times are shown as determined with the temporal-

only method (top row) and the spatiotemporal method (bottom row). Spatiotemporal post-

processing yielded more accurate timings than the temporal-only method. Activation times

determined from PBR-based electrograms were no more accurate than those determined

from Tikhonov-based electrograms. However, recovery times were significantly more accu-

rate when PBR was used, especially with region-specific bases. Combining spatiotemporal

post-processing with region-specific bases gave the most accurate results (with R = 0.70 to

R = 0.80, p < 0.05).

Fig. 7.4.C shows that, in line with these results, localization error was improved by using

spatiotemporal post-processing in all methods. Localization error did not further improve

with PBR, although using region-specific PBR did remove one outlier.

Table 7.1 shows the results for a subset of the data (one dog, 39 recorded beats), where we

also used the bases generated with the whole-heart model (TNNPb). From this table, it can

be seen that a simple model of the AP combined with a simplified propagation model gives

the same quality PBR reconstruction as a detailed three-dimensional monodomain model.

All previous results are based on PBR reconstructions using bases that consisted of compo-

nents 2–10 of U , that is, the first ten components of the SVD of the simulated beats, not

including the first component. The first component is a constant negative pattern, reflect-

ing the -80 mV offset of the simulated APs. As we reconstruct electrograms (with a zero

average), not APs, this offset component does not have a role for our purpose. Components

2–10 for a FHN-based set of simulated beats are shown in Fig. 7.1.C1. In Fig. 7.6, the basis

components are shown for all AP models and beat origins in one dog. Reconstruction accu-

racy with different components of the SVD as basis is shown in Table 7.2 for components

2–5, 2–10, 2–15 and 2–25 for the full data set. For most metrics, using components 2–10

gave the best result.
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Figure 7.4: Results for the full data set. Columns show the result for the different reconstruction methods:
traditional Tikhonov (Tikh) regularization, or regularization by a physiology-based method without (FHNall,
LR92all and TNNPaall) and with (FHNspec, LR92spec and TNNPaspec) region-specific bases. Panel A: box
plots of correlation coefficients between recorded and reconstructed electrograms. Box spans the interquartile
range (IQR), i.e., the 25-75% range; median indicated by horizontal line; whiskers at 9-91% range. Overall,
PBR improves reconstruction quality, especially using region-specific bases. Panel B: Activation times (red)
and recovery times (blue) as reconstructed (horizontal axes) vs. recorded (vertical axes). Top row shows these
timings as directly determined from the electrograms, i.e. with temporal-only criteria. Bottom row shows
timings as determined with a spatiotemporal method. Recovery times, especially, are improved by PBR.
Additional improvement is achieved when spatiotemporal post-processing is used. Panel C: Localization
error between detected and known origins of pacing, as determined with temporal-only methods (hatched
box plots) and with spatiotemporal methods (gray box plots). A combined use of spatiotemporal post-
processing and PBR gives most accurate results. An asterisk (*) indicates significant improvement compared
to Tikhonov results.

149



Using whole-ventricle simulations for regularization in ECGI

Table 7.2: Dependency on Basis Size.

Correlation coefficients for electrograms (CC)
5 0.81 0.80* 0.79* 0.80* 0.83* 0.83* 0.83*
10 ” 0.84* 0.82 0.84* 0.85* 0.84* 0.85*
15 ” 0.81 0.81 0.81 0.82 0.81 0.82*
25 ” 0.74* 0.73* 0.73* 0.72* 0.74* 0.71*

Activation time correlation (R)
5 0.73 0.68 0.66 0.68 0.65 0.65 0.64
10 ” 0.72 0.70 0.72 0.72 0.71 0.71
15 ” 0.72 0.71 0.72 0.70 0.67 0.69
25 ” 0.62 0.57 0.62 0.51 0.58 0.49

Recovery time correlation (R)
5 0.57 0.62* 0.60 0.62* 0.69* 0.67* 0.69*
10 ” 0.64* 0.62* 0.63* 0.72* 0.66* 0.72*
15 ” 0.58 0.57 0.58 0.61* 0.62* 0.61*
25 ” 0.41 0.39 0.42 0.37 0.36 0.35

Localization error (mm)
5 33 48* 45* 48* 46* 41* 45*
10 ” 40 39 42* 35 34 36
15 ” 34 30 33 35 36 34
25 ” 37 45* 37 41* 38 36*
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Not only the basis size k is important, but also the number of morphologically-distinct

beats that was used to create that basis. In Fig. 7.5, the dependency of PBR-accuracy

on the number of simulated unique beats is explored in a subset of the data (one dog, 39

recorded beats) with the FHNall basis. Both correlation between recorded and reconstructed

electrograms, and the accuracy of activation and recovery times are maximal when data from

6 or more simulated beats is included in the basis Uk.

7.4 Discussion

We have shown in an in vivo experiment that PBR increases the accuracy of reconstruction

of electrograms and recovery times, compared to traditional Tikhonov regularization, and

was able to recover electrogram characteristics that were lost with Tikhonov regularization.

This indicates that PBR yields more information in the reconstructed electrograms than

traditional methods.

7.4.1 Activation and recovery times

PBR did not improve accuracy of activation times, which were already determined with rea-

sonable accuracy using Tikhonov regularization. Activation times were most accurate when

the spatiotemporal method for activation time estimation was used. In contrast, recovery

times were determined more accurately with PBR than with Tikhonov regularization, and

therefore profited less from spatiotemporal post-processing. However, a combination of PBR

with spatiotemporal post-processing yielded the highest accuracy for recovery times.

Abnormalities in recovery patterns can be an important substrate for cardiac arrhythmia

and they are often difficult to diagnose from the 12-lead ECG due to its limited spatial

resolution. Noninvasive imaging of recovery abnormalities could therefore be very beneficial

for risk assessment and to deepen our understanding of the role of recovery abnormlities in

arrhythmia.

7.4.2 Beat origin localization

Beat origin localization is performed by finding the location with the earliest activation time.

Since the accuracy of the estimated activation times did not improve significantly with PBR,

beat origin locations were not significantly improved. However, some outliers were removed

when region-specific bases were used. This is relevant for clinical practice, where the origin

of a ventricular ectopic beat is often a target for invasive ablation therapy. More accurate

localization of ectopic beats could help guide therapy, thereby reducing procedural time and

improving success rates.
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7.4.3 Using tuned bases

One interesting feature of PBR is that its bases can be tuned to a specific clinical question.

From a 12-lead ECG, the LV or RV origin of an ectopic beat can often be determined

without issues. In this study we have shown that, by using a basis specific to the LV or

RV, a higher accuracy of electrogram reconstruction is achieved, along with a reduction of

origin-localization outliers. One could argue that a more localized basis might be even more

beneficial. However, according to a study investigating the accuracy of human interpretation

of 12-lead ECG, an experienced cardiologist can correctly identify the ventricle of origin (LV

vs RV) in 76.6% of the cases based on the 12-lead ECG, but further sublocalization within

the ventricles is accurate in only 38.1%. Thus, one should be careful not to limite the basis

to very specific regions, as this may result in the reconstruction of that beat (Erkapic et al.,

2015).

Interestingly, the AP model used did not affect reconstruction quality, and a simplified model

of AP propagation was found to perform as well as a fine-grained monodomain simulation.

This may be explained by the fact that the truncated basis elements reflect the spatial

potential patterns, mainly reflecting the order of activation. Consequently, as demonstrated

in Section 7.A, the basis patterns obtained with SVD using different models are very similar.

PBR leaves temporal aspects largely unconstrained and it is unlikely that incorporating

temporal patient-specific characteristics will benefit the results. However, including spatial

information such as infarcted regions could directly influence reconstruction quality: these

characteristics will have a large impact on simulated beat propagation and will therefore be

incorporated in the truncated spatial basis. Similarly, incorporating spatio-temporal infor-

mation such as abnormal regional changes to the AP may lead to improved reconstructions.

These results suggest that even simpler methods for simulating propagating waves, for ex-

ample using the eikonal equations (Wallman et al., 2012), may be applicable to PBR in its

basic form. However, such methods do not offer as clear a road to integrating patient-specific

spatio-temporal characteristics such as local changes in the ionic balances. As the dogs used

in this study had normal hearts, we were not able to investigate these hypotheses.

7.4.4 Parameter dependency

PBR is able to reconstruct electrophysiologically relevant patterns using a limited number

of basis elements (typically 9) generated from only a few simulated beats (6 or more). This

is possible because a linear combination of these basis elements still spans a large enough

solution space. The Lasso method allows any linear combination, but gives preference to

sparse solutions, thereby reducing the influence of ill-posedness. The combination of a

truncated realistic basis with Lasso optimization will result in solutions based on a small

number of electrophysiologically relevant ‘building blocks’.
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An open question is how to automatically determine the number of elements needed in the

truncated basis. With too few elements, the basis will not span the full range of possible

potential patterns and the method will be unable to reconstruct all physiologically relevant

cases. If too many elements are used, the ill-posedness of the inverse problem will dominate

and allow noise-like influence of the ‘less important’ basis elements to obscure the real

solution. In this study, we found that the optimal basis size was close to 9. For clinical

applications, where no invasively measured potentials are available, methods are needed

that automatically determine the optimal basis size. These should aim to find a balance

where ill-posedness is reduced without overly constraining the solution space.

We have not investigated the dependency of PBR on the number of body-surface electrodes.

Earlier work by our group shows that ECGI in general needs at least 80 electrodes on the

body surface for accurate reconstruction of heart-surface potentials (Cluitmans et al., 2015a).

However, PBR’s lower dimensionality due to the sparse basis might warrant a lower number

of body-surface electrodes. Especially in a clinical setting, where the 12-lead ECG is a

commonly used tool, its reduced set of only 9 electrodes would make a practical alternative.

Future studies should investigate whether this low number of electrodes in combination with

PBR does indeed provide accurate results.

7.4.5 Limitations and future work

One important limitation of our current PBR implementation is that the basis is created

from cellular AP simulations, whereas the actual inverse reconstruction is in terms of local

electrograms. The cellular AP reflects potential differences over the cell membrane, whereas

local electrograms reflect extracellular potential differences over larger regions of tissue. It

is possible PBR results could be improved by using simulated local electrograms instead of

cellular APs.

In the validation part of this study, we were limited by the healthy status of the animals and

could not investigate the effect of (local) tissue abnormalities (e.g., myocardial infarction).

We had no information about anisotropy of the tissue, so this was not included in the

simulations. However, we expect that the more complicated spatial patterns resulting from

anisotropy can already be reconstructed using our current basis vectors. Future work may

be needed to show if this is true.

7.4.6 Other approaches

We have presented a method to include electrophysiological data in the potential-based

formulation of the inverse problem, but this was not the first attempt to achieve this. For

example, He et al. (2003) proposed to solve the forward problem based on potentials from an

anistropic heart model, and then compare the resulting body-surface potentials to recordings.
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By optimizing the computed body-surface potentials, they obtained an estimate for the

heart-surface potentials. Wang et al. (2010) employed a statistical framework to constrain

inverse solutions to realistic transmembrane potential dynamics.

In a study by van Oosterom (1999), a method was presented to reconstruct the heart-surface

potentials based on a-priori knowledge about their spatial covariance. This knowledge is

usually not available and this method therefore cannot be applied in practice. However,

with methods similar to those presented in the present paper, knowledge about the spatial

covariance could be simulated, making it worthwhile to re-investigate this approach.

In a recent study by Lopez-Rincon et al. (2015), heart-surface potentials were reconstructed

with the help of a simulation based on the bidomain equations, similar to the TNNPb

monodomain simulations performed in this manuscript. We have shown that, in our imple-

mentation, such a detailed cellular implementation does not contribute to the accuracy of

reconstructions.

Some implementations of the inverse problem of electrocardiography are not based on a

potential-based formulation, as in this study, but define cardiac activity in terms of activation

wavefronts or other equivalent sources. In the wavefront-based formulation of the inverse

problem, (cellular) electrophysiology models have always been part of the reconstruction

process, e.g., by including a model of the expected transmembrane potentials (van Dam

et al., 2009) or modeling the activation wavefront as a physiologically-inspired propagating

curve (Ghodrati et al., 2006).

Although our method was not the first to include electrophysiological data to improve the

inverse reconstruction of electrical activity on the heart, to the best of our knowledge it is

the first to apply it to obtain both activation and recovery patterns and validate these in

vivo.

7.5 Conclusion

We have introduced and validated PBR, a novel method to noninvasively reconstruct epicar-

dial potentials from body-surface potentials. By incorporating simulated electrophysiological

input in the regularization of the inverse problem of electrocardiography, more information

is recovered in the reconstructed epicardial electrograms. Reconstruction of recovery time,

in particular, is improved with this method. While we found that the level of temporal de-

tail in the simulations did not affect the results, the inclusion of spatial characteristics (i.e.,

suspected LV or RV origin) did improve accuracy. Noninvasive imaging of recovery abnor-

malities with PBR can greatly benefit risk assessment and improve understanding of their

role in arrhythmias. This may help to answer clinical questions with improved accuracy.
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7.A SVD Bases

A comparison of bases generated from different AP models is shown in Fig. 7.6. Each row

shows bases elements 2–10 as created with a specific AP model (FHN, LR92, TNNPa or

TNNPb) and a specific region of simulated origins: full epicardial surface (all), only the LV

(left), or only the RV (right). The elements are shown in descending order (left-to-right) of

contribution to the simulated potentials. Regardless of AP method and beat origins, the first

basis elements capture simple patterns and later elements capture more complex patterns.

There is a clear difference between basis elements of different beat origins (all versus left

versus right), but less difference between basis elements of different AP models.
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Figure 7.6: Bases created with PBR for different AP models and simulated beat origins, in one dog.
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8.1 Introduction

Diagnosis and treatment of cardiac arrhythmias can benefit greatly from a deeper under-

standing of the mechanisms by which they arise. A wealth of information has been gathered

about the fundamental processes involved on the genetic, molecular, cell, tissue, organ, and

whole-body levels, and modern clinicians have access to diagnostic methods on each of these

scales. Yet to make full use of this information, an integrative or systems approach is re-

quired that combines information from the different levels, and adds information about how

processes at the different scales interact (Rudy et al., 2008; Kohl et al., 2010; Noble, 2017).

Computational methods, particularly multi-scale modeling and simulation, have been very

useful in this respect. Chapters 3-7 of this thesis each address a different topic, combining

information from different scales or developing methods to integrate them (see Fig. 1.1).

In Chapter 3 we presented Myokit, our newly developed toolkit for action potential (AP)

model simulation and development. Myokit can be used to create models of ion currents,

integrate them into models of the cellular AP, and combine AP models into models of tis-

sue. Chapter 4 then investigated a technique to speed up AP simulations. In Chapter 5 we

measured variability in the kinetics of the fast sodium current INa and showed how it could

affect the cellular AP. Chapter 6 then described our efforts to establish an in silico link from

genetic mutations (in SCN5A) to current-level changes (in INa). Finally, in Chapter 7 we

used Myokit to perform simplified whole-heart simulations that were used in the regulariza-

tion problem of electrocardiographic imaging (ECGI), thereby making a connection to the

whole-body scale. In this chapter, these topics are discussed in the broader context of using

a systems approach to understand cardiac electrophysiology and arrhythmogenesis.

By combining multi-scale modeling with experiments, it is possible to link observations at

the genetic or molecular scale to higher-level features of the physiology and pathophysiology

of the heart. For example, Bébarová et al. (2008) measured INa through channels encoded

by wild-type (WT) and mutated SCN5A and used modeling to extrapolate to the single-cell

level, transmural myocardium, and the pseudo-ECG. Benson et al. (2008) studied the effects

of channel-blocking drugs in simulations of single cells, fibers and 3-dimensional wedges of

tissue. These studies investigated hypothesized disease mechanisms, and showed by simula-

tion that certain molecular changes could be the cause of observed higher-level effects (e.g.,

changes to the ECG). Besides this use in evaluating mechanistic hypotheses, modeling also

has direct predictive power, as was shown in recent studies into drug-development (Cum-

mins Lancaster and Sobie, 2016) and clinical risk assessment (Hoefen et al., 2012; Arevalo

et al., 2016). A schematic ‘pipeline’ illustrating a common pattern in these studies is shown

in Fig. 8.1.

Many other set-ups are possible, for example including single channel function (Clancy and

Rudy, 1999; Silva et al., 2009), subcellular detail (Greenstein and Winslow, 2002; Nivala

et al., 2012), signaling (Saucerman et al., 2004; Heijman et al., 2011), contraction (Matsuoka
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Figure 8.1: A common pattern in multi-scale modeling of cardiac electrophysiology, starting from effects at
the ion-current level and building up to the levels of cell, tissue and pseudo-ECG. In the first step, the effect
of a mutation, drug or other factor on an ion current is quantified experimentally. This leads to an updated
model of the current that is integrated into a model of the cellular AP. At this stage, additional modifications
can be made, for example to make the model more specific (e.g., cell type, gender) or to include disease or
drug-induced changes (e.g., altered current densities and ionic concentrations). Next, a tissue-level model
is constructed. At this level, heterogeneity in cell properties or tissue geometry can be added. Information
travels from the lower to the higher scales, but there is also feedback in the form of the membrane potential
(Vm), the ionic concentrations, and the diffusion current between cells (Idiff). Finally, a pseudo-ECG is
calculated from the simulated tissue-level results.

et al., 2003; Cortassa et al., 2006), and 3-dimensional geometries (Panfilov and Holden, 1993;

Gharaviri et al., 2012; Gurev et al., 2015). However, there are several challenges that need

to be overcome before we can fully exploit the potential of these techniques.

Firstly, the relationship between diseases and molecular factors (such as ion channel sub-

units, channel-blocking drugs or compounds involved in signaling) is complex. While the

successes of genetics and the advent of highly specific targeted drugs have occasionally led

people to view (patho)physiology in terms of molecular factors, diseases themselves “repre-

sent emergent properties at the scale of the organism that result from dynamic interactions

between multiple constantly changing molecular factors” (Weiss et al., 2015). In terms of

Fig. 8.1, the exact change seen on the left is less important than how the altered current

interacts with the other currents to form the AP, and arrhythmogenesis is best described

in terms of higher-level emergent properties such as elongation of the AP or repolarization

reserve1 (Roden, 2008). A good example of this complexity is INa, where a single mutation

in SCN5A (resulting in a single molecular-level change) can cause several distinct clinical

phenotypes (Remme, 2013), where drugs targeting the channel are powerful but unpre-

dictable (Remme and Wilde, 2014), and where pathogenicity predictions are still unreliable

(see Leong et al., 2015, and Chapter 6 of this thesis).

Secondly, and related strongly to the previous point, is the fact that arrhythmias typically

do not have a single cause. Instead, they require both a vulnerable substrate, (a specific set

of potentially dangerous conditions) and a trigger (some spontaneous internal or external

event that sets the arrhythmia off). The substrate is likely to be a combination of factors

such as mutations, changes in ionic concentrations, or structural and electrical remodeling.

1 A possible analogy is trying to study a conflict by focusing on the individual sides, despite the fact that
crucial concepts like ‘disagreement’ and ‘escalation’ do not exist at the single-person level.
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This need for multiple coacting factors to create the conditions for an arrhythmic event

complicates diagnosis (top-down prediction) and risk-assessment (bottom-up prediction).

For example, recreating the trigger in a clinical setting might not recreate the arrhythmia

if the right substrate is not present (so that stress testing may be necessary). The trigger

itself can even be an otherwise innocuous and common occurrence (even the sudden ringing

of an alarm clock, see Wellens et al., 1972). Conversely, individual aspects of a vulnerable

substrate, including rare mutations in ion-channel genes, can occur in otherwise healthy

individuals without causing an arrhythmia. In Fig. 8.1 this is shown by the necessary

introduction of additional modifications and heterogeneity at the cell and tissue levels.

The third and final complication discussed here, is the existence of variability between

subjects, variability in a single subject over time, and even cell-to-cell variability within a

single subject. Well-known examples of biological variability are outward appearance, the

shape of the heart, and even the shape and size of individual myocytes. But variability

extends beyond structural differences, and is also evident in the electrical properties of the

heart (see also Chapter 5). A review by Marder and Goaillard (2006) presented strong

evidence showing that major variability occurs in expression levels of neuronal ion channels,

which correlate directly with the densities of the associated ion currents (Schulz et al.,

2006). This level of variability is remarkable, as even small changes in the strength of ionic

currents can have severe consequences in both neurons and myocytes. At the same time,

some variation is inevitable as cells are not static entities but rebuild themselves constantly.

For example, the channels carrying INa and IKr are replaced every 35 hours and 10 hours

respectively (Maltsev et al., 2008; Vandenberg et al., 2012). A cardiac modeling study by

Sarkar and Sobie (2010) showed that, despite a cardiomyocyte’s sensitivity to changes in

ion channel expression, a large degree of variability in expression is possible, provided it is

compensated by changes to the other currents. As Marder and Goaillard explain, the ability

of a cell to regulate its electrical function leads to a situation where parameters sensitive to

sudden small changes can drift slowly but dramatically with time. In other words, as long as

the cell can keep compensating, even ‘sensitive parameters’ can show large variation without

apparent consequence. Weiss et al. (2012) pointed out the impact this has on understanding

arrhythmogenesis: if, for example, repolarization in one patient’s myocytes depends strongly

on IKr while the same current plays only a small part in another, the two patients will have

very different risks of arrhythmogenesis when administered IKr-blocking drugs. As a result,

clinical treatment should not focus on ‘fixing’ specific currents, but on restoring dynamical

phenomena such as repolarization (Weiss et al., 2015). In terms of trigger and substrate,

the existence of strong variability in the mechanisms underlying the cellular AP implies that

the substrate of patients with similar histories and genetic backgrounds can still be very

different, and may even change over time.2 In Fig. 8.1 variability can be eliminated by

2 Besides complicating the analysis of arrhythmias, variability may confer an evolutionary advantage by
allowing individuals to adapt (if changes are slow) or parts of the population to survive (if changes are fast).
In other words, the idea that myocytes can function in different configurations is consistent with the idea of
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adding modifications to create a patient-specific model, or it can be included in the models

using techniques discussed in Section 8.4.

With these issues in mind, we now discuss multi-scale modeling of the cardiac AP, show

where the work presented in this thesis can help increase the utility of multi-scale modeling

for cardiology, and highlight future challenges.

8.2 Multi-scale modeling and simulation

Simulation with multi-scale models allows the interaction between dynamical processes in

the heart to be explored. This means it can be used to study the cell-level properties that

emerge when ion channels are coupled by a cell membrane, but also the tissue-level properties

that emerge when cells are coupled by gap junctions and extracellular conduction. The

view that diseases themselves represent such emergent properties implies that simulation

is a crucial tool for the study of arrhythmogenesis. In contrast to experimental studies,

computational studies allow complex arrhythmogenic substrates to be modeled and perfectly

controlled (but see Section 8.3 for important caveats). Current applications of AP-model

based simulation range from theoretical and fundamental (‘basic’) research to drug discovery

and risk prediction in a clinical setting. Understanding and incorporating variability into

these models is a challenge for the future (see Section 8.4). In this section, simulation and

modeling at the different scales encountered in this thesis are discussed.

8.2.1 Linking genes to channels and currents

Multi-scale investigations of genetic defects in ion-channel genes commonly start with elec-

trophysiological experiments to quantify the mutation’s effects on the whole-cell current,

after which the investigation continues in silico. Experiments can focus on the pore-forming

α-subunit, but also on auxiliary β-subunits or genes for the many gene-products that bind

to and interact with the macromolecular complex that forms the ion channel. Replacing

this laborious experimental step with a computational approach could be both cost-effective

and greatly increase the scale at which such work could take place.

In Chapter 6, we attempted to predict the change in INa due to a mutation in SCN5A,

the gene encoding its pore-forming α-subunit. Using machine-learning techniques and a

database of mutations with known effects, we showed that the absence or presence of par-

ticular changes could be predicted with better-than-chance accuracy. While we showed that

the out-of-the-box accuracy of machine-learning methods on this database surpassed that

of commercially available direct pathogenicity predictors, the accuracy was still low. For

example, while presence of inactivation defects could be predicted with 70% accuracy, this

was only slightly better than the 64% accuracy obtained by simply always guessing the most

using redundancy to create robustness.
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common outcome. However, other measures such as the area under the curve (AUC) were

improved considerably, suggesting the method may still hold promise for the future. More

work in this area is required, particularly into decreasing bias in the data set by adding

mutations with very small or very large effects (i.e., mutations that can easily go unnoticed

and mutations incompatible with life, see Section 6.4.2.2). Another application of this idea

would be to create a similar database for a different gene such as KCNQ1, for which clinical-

phenotype predictions are known to be more accurate (Leong et al., 2015), which suggests

that current-level predictions may be more accurate too.

An alternative approach is to model the channel behavior directly, using molecular dynam-

ics (MD) simulations. With MD, all atoms in an ion channel can be modeled, along with

considerable stretches of nearby membrane. Such simulations are well-developed, and have

been the subject of much research: a very extensive review was given by Roux et al. (2004).

However, these simulations cannot determine the 3-dimensional structure of the folded chan-

nel, which must instead be determined using crystallization of isolated channels. Once the

structure for one channel is known, estimates for similar channels can be obtained with

homology modeling. This technique can also be used to introduce mutations into the model,

but as it starts from a fully formed channel it can not predict issues with transport or fold-

ing. Due to their computational complexity, MD simulations are limited to very short time

scales i.e., ‘tens of nanoseconds’ rather than the milliseconds, seconds, and minutes typical

in AP modeling (Southern et al., 2008). This means that, even with the expected increase

in computing power, determining the effects of mutations on channel function ab initio is

still a distant prospect (Silva and Rudy, 2010).

As a result, building models of ion currents based on whole-cell patch-clamp data remains

a highly relevant and challenging task for the foreseeable future. Two recent developments

worth mentioning in this context are automated patch-clamping and human induced pluripo-

tent stem cells (hiPSC). With hiPSC, it is possible to culture a line of cells that can be made

to differentiate into myocyte-like cells that can be clamped and measured (possibly with the

addition of ‘artificial’ currents using dynamic clamp, see Meijer van Putten et al., 2014).

Ma et al. (2013) have even obtained stem-cells from a patient and a sibling, and used these

to study a mutation in a patient-specific setting. The benefit over cardiomyocytes is that

these cells can be cultured, so that experimental work does not necessarily require the highly

invasive clinical procedures needed to obtain cardiomyocytes from patients.

In the past decade, automated patch-clamp systems have been developed and used in safety

testing and drug discovery (Stoelzle et al., 2011). With such systems, ‘basic’ patch-clamp

protocols can be run on larger numbers of cells than with a traditional patch-clamp system

(although expertise is still needed from the experimenter), but they can also be used to

perform more complicated measurements such as recording late INa (Chevalier et al., 2014).

An interesting future prospect is to improve the throughput and success rate of such devices
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Figure 8.2: Fitting an ion current model to patch-clamp data using the whole-trace method. A single
protocol is applied to a real cell and a simulated cell and (after post-processing of the experimental data)
the results are compared. An optimization method is used to iteratively refine the parameter values and
re-run the simulation until the error is below a preset threshold.

by using optimized protocols such as described in Clerx et al. (2015) and Fink and Noble

(2009), followed by a robust model fitting routine (Loewe et al., 2016). Conventional elec-

trophysiological values such as time constants and midpoints of (in)activation could then be

obtained from the fitted models using simulation.

8.2.1.1 Simulation and fitting models of ionic currents

Traditional analysis of voltage-clamp and patch-clamp involves measuring quantities such as

peak magnitude and time-to-peak, and using these to derive measures such as midpoint of

activation. Several studies have pointed out that this does not use all the information in the

measured signals and is more prone to errors than using whole-trace fitting (Hafner et al.,

1981; Willms et al., 1999; Lee et al., 2006; Buhry et al., 2011). A schematic overview of a

whole-trace model-fitting routine is shown in Fig. 8.2. A protocol is created and applied to

a cell. Next, the same protocol is used in a simulation based on some model of the current,

and the results are compared, resulting in some measure of the error, or ‘score’. Finally,

an optimization method is used that iteratively refines the model’s parameter values and

re-runs the simulation until the error is below some preset minimum.

With the exception of the experiment, all these steps can be handled within Myokit. The

simulation step can be performed using any of its simulation engines (see Chapter 3). For

very fast simulations with Markov models, the simulation engine based on eigenvalue de-

composition can be used, but if non-linear effects need to be included the CVODE engine

can be used instead (as was done in Chapter 5 to incorporate membrane charging time).

As a future step, it may be possible to integrate Myokit’s multi-cell GPU simulation engine

with the parameter estimation routine, allowing large numbers of simulations to be run in

parallel and potentially speeding up the parameter estimation process.

In addition to the standard simulation classes, Myokit contains an advanced simulation

engine that uses automatic differentiation to calculate partial derivatives of the state and
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other variables with respect to one or more parameters. This can be used to run local

identifiability checks (Cobelli and DiStefano, 1980; Fink et al., 2008a). Using such checks,

we can provide a partial3 answer to the question ‘does applying this patch-clamp protocol

give us the information we need to find a unique set of parameter values that provide the best

fit?’ This can be used to check the validity of patch-clamp protocols. When investigating

variability, such a protocol-checking method is vital to ensure the observed variability is not

a result of the experimental set-up (see also Chapter 5).

In addition, identifiability checking can be used to optimize protocols, reducing their run-

time while ensuring they provide the necessary information (Fink and Noble, 2009). In

Clerx et al. (2015) we use this method to create a very short (260ms) protocol to extract

all the information needed to fit the INa model by Clancy and Rudy (2002). While more

work is needed to refine these methods, such optimized protocols hold great promise for

the study of ion-channel behavior using whole-cell patch-clamp experiments. For example,

when studying mutations, the method could be used to quickly train a model to a mutated

current, and then remaining experiments could be run in silico. Alternatively, if the protocol

is constantly re-run while a channel-blocking drug is applied, it could be used to study the

mechanism by which the drug affects the channel (by inspecting which parameters change at

which time). However, as shown in Clerx et al. (2015), this may first require improvements

in our models of cardiac INa. Another area where improvements can be made is in the

development or refinement of optimization methods that deal well with ion-current fitting

problems. Such methods should accept a score function without derivatives, be fast, robust

and capable of dealing with noise.

8.2.2 Cells, coupled cells and tissue

Once ion-current models have been defined, they can be grouped into cell models, and

cell models can then be coupled to create tissue models (see Chapter 2). This has a wide

range of well-established applications, including single-cell simulation, small and large-scale

simulation of (heterogeneous) tissue (see Chapter 3), and whole-heart modeling (see Chapter

7). More recent applications include simulation of cell-to-cell variability (see Chapter 5) and

detailed modeling of subcellular ionic concentrations. In this section, these applications are

briefly discussed and Myokit’s established and unexplored capabilities are reviewed.

Myokit includes a GPU-accelerated ODE solver for multi-cellular simulations (Chapter 3

and Chapter 4). By default, this simulation engine assumes homogeneous cells, connected

in a rectangular grid as shown in Fig. 8.3.A. Such simulations can be used to study (altered)

conduction velocities or spiral waves on homogeneous tissue (Fenton et al., 2002). In Myokit,

any model parameter can be varied between cells (limited only by the amount of memory

3 Because the method uses first-order derivatives evaluated at an initial set of parameter values, a positive
result is only valid for nearby points in the parameter space. A negative result does imply the model is not
globally identifiable.
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in the hardware) and the connection strength between any two cells can be specified indi-

vidually. This allows the same engine to be used to model heterogeneous networks of cells

or patches of tissue in 1, 2 or 3 dimensions, as shown in Fig. 8.3.B. Allowing heterogeneity

opens up a wide range of possibilities, including transmural strands (Bébarová et al., 2008),

heterogeneous tissue (Panfilov and Vasiev, 1991; Ten Tusscher and Panfilov, 2003), irregu-

lar, three-dimensional geometries (Chapter 7), and models including fibrosis and structural

or functional reentry. If no connections are specified, the engine can be used to simulate

large numbers of cells in parallel, as shown in Fig. 8.3.C. This can be useful to explore the

influence of a parameter over a wide range, which can be more informative than looking

at derivatives especially when large changes or strong non-linear behavior is involved. By

varying multiple parameters at once, this method could also be used to perform ‘population

of models’ studies (Muszkiewicz et al., 2016) (although it is possible that multiple runs of

the faster single-cell simulation engine may still provide better performance, especially when

long pre-pacing periods are required). Another feasible use that we have yet to explore in

detail, is the modeling of heterogeneously coupled networks of cells as shown in Fig. 8.3.D.

Such studies can provide insights into the role of heterogeneous gap-junction expression in

arrhythmogenesis (Prudat and Kucera, 2014). From a computational point of view, this

is essentially the same situation as in Fig. 8.3.B. A relatively new development in cellular

AP modeling is the use of models with large numbers of subcellular elements, as shown in

Fig. 8.3.E. These simulations are typically aimed at exploring intracellular calcium waves

or sparks, which can cause spontaneous contraction (Nivala et al., 2012; Voigt et al., 2014).

It may be possible to use Myokit’s multi-cell simulation by replacing the cell models with

subcellular compartment models, and reinterpreting the variables used to represent gap-

junction currents as intracellular diffusion. A further extension on this scheme would be

to couple multiple, subcellularly detailed, cell models together into a system for studying

the propagation (or lack of propagation) of spontaneously induced calcium waves. This is

visualized in Fig. 8.3.F. Both types of simulation form a viable target for further Myokit

development, but may require the introduction of stochastic variables in cell models (which

are currently not supported) and the use of multiple models within the same simulation.

Some preliminary work towards mixed-model simulation in Myokit has been performed.

Fig. 8.4 shows a simulation of propagation across the Purkinje-ventricular junction, modeled

using a Purkinje cell model and a ventricular cell model. Such simulations have been used

to study the conditions under which slowed conduction or conduction-block can arise which

can play a part in arrhythmogenesis (Aslanidi et al., 2009b). In Myokit, this is implemented

using a specialized simulation type which does not yet support heterogeneous cell parameters,

customized connection strengths etc. An open question for the future is whether it is possible

to adapt the standard multi-cell simulation to allow multiple model types without a loss of

performance or an excessive increase in code complexity.
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Figure 8.3: Multiple uses of Myokit’s multi-cell simulation engine, including realized uses (top row) and
potential ones (bottom row). (A) Rectangular grids of coupled cells or a rectangularly discretized space
simulated with the monodomain equations. Model parameters and cell-to-cell conduction may be varied
between cells. (B) Arbitrarily complex geometries, created by specifying each cell or node’s connections
manually. (C ) Multiple single-cell simulations running in parallel, with different parameters for each cell.
Future uses: (D) A network (E) Simulation of a single cell with a sub-cellular resolution, for example to
investigate calcium sparks. (F ) Like E but with multiple cells connected by gap junctions.

t=3ms t=6.5ms t=18ms  40mV

-90mV

 0mV
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ventricle

Figure 8.4: A simulation of the Purkinje-ventricular junction at t = 3ms, t = 6.5ms and t = 18ms. The
Purkinje fiber is formed by 64× 32 cells simulated using the model by DiFrancesco and Noble (1985). The
ventricular tissue consists of 96× 96 cells simulated using the model by Luo and Rudy (1991).
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8.2.3 Towards whole-heart simulations

Despite impressive recent examples (Sugiura et al., 2012; Gurev et al., 2015), simulating

ever larger parts of the heart is limited by computational power. For this reason, large-

scale simulation projects often have a strong focus on performance, rather than versatility.

Such projects typically require the model code to be written using the same language as

the simulation engine, and may ‘tweak’ and optimize the model code in many ways (see

for example the simulations by Mirin et al. (2012) or the highly efficient CARP simulation

engine by Vigmond et al. (2003)). This sacrifice of versatility for performance may be

partially circumvented by including an automatic model code generator, as is done in Chaste

(Mirams et al., 2013), or even re-generating the model code for every simulation (as is done

in Myokit).

One of the core ideas behind Myokit is that models are specified in an easy-to-use model

language, and then automatically translated to faster ‘low-level’ code. This means that,

at current, Myokit is unable to use optimizations that require the model equations to be

written in a special form, such as the method proposed by Rush and Larsen (1978). However,

since Myokit creates a symbolic form of the equations when parsing a model file, it may be

possible to implement such optimizations automatically when generating code for large-scale

multi-cellular simulations (similar to what was shown in Chapter 4). Similarly, other ways of

automated model adaption could be investigated, for example using model order reduction

to simplify Markov models of ion currents. Future work will need to determine if this is a

worthwhile investment of resources or if it is more efficient to use Myokit up to a point, and

then export the model to a format usable with existing high-performance software.

A different method to scale up simulations is by working towards better model integration:

instead of simply linking smaller models together, models can be created that contain part

of, but not all of, smaller models. In a way, this implies model simplification: deciding which

details are absolutely necessary and which can be omitted for a particular simulation. Ex-

amples of details that can and have been modeled but may often be omitted include stochas-

tic channel behavior (Heijman et al., 2013), subcellular calcium gradients (Greenstein and

Winslow, 2002) and voltage-sensitivity of gap junctions (Gros and Jongsma, 1996). Some

models have gone even further, and grouped currents together or omitted them completely

(Courtemanche et al., 1990; Fenton and Karma, 1998; Bernus et al., 2002). By omitting

detail from the AP, it becomes possible to build models of much larger spatial structures

that incorporate new details such as fiber orientation, geometrical structure or communi-

cation between sub-models (for example propagation from the AV node to the atrium).

For example, Fenton and Karma (1998) found that simplified AP models allowed them to

study propagation through 3D anisotropic tissue. The model of the human right atrium

by Podziemski and Żebrowski (2013) also uses simplified cell models, but this allows it to

include models for both the SA and AV node. Balakrishnan et al. (2015) used simplified
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AP models to create a whole-heart model that included the SA node, AV node, bundle of

His, Purkinje, atrium and ventricles and that could recreate various arrhythmias. The low

computational cost of such models also means they can be used to simulate behavior over

longer periods of time, which opens up a road towards modeling long-term processes such as

electrical remodeling. At the same time, these models are often (partly) phenomenological,

rather than mechanistic, which can make it harder to relate them to experimental data.

They also run the risk of missing subtle effects, in situations where the system is highly

sensitive to small changes. Nevertheless, if care is taken to avoid these issues, simplified

models form an attractive alternative to detailed mechanistic ones.

In Chapter 7, we used AP models connected in a simplified mesh representing the human

ventricles to run simulations used in physiology-based regularization (PBR), a novel method

for a crucial step in calculating heart-surface potentials from recorded body-surface poten-

tial mappings (ECGI). These simulations used detailed AP models and a patient-specific

geometry, but also omitted details, notably the atria and conductive system. In addition,

we used a simplified geometry with a small number of nodes. However, by comparing it to

a more detailed simulation (again, only ventricles, but this time with a 3-dimensional ge-

ometry and a much higher number of nodes) we showed that this omission of detail had no

consequence for the simulation’s use in PBR. In part, this is likely due to the way PBR uses

the simulations to generate spatial patterns of activation, which are then used as a basis for

reconstructions. This implies that (1) any pattern that can be recreated as a combination

of patterns present in the basis does not need to occur in the simulation, and (2) temporal

information is mostly lost, so that details of timing in the AP models are not used. Further

work is needed to see if simpler methods such as eikonal or graph-based activation models

(Wallman et al., 2012) can be used, or if detailed AP models have benefits in more complex

situations than studied in Chapter 7.

8.3 Reliability and reproducibility

A vulnerable substrate for an arrhythmia is composed of multiple factors. This presents an

opportunity for modelers: making a change to a model’s parameters is a straightforward

task, while controlling variables experimentally can be costly, difficult, time-consuming,

or physically impossible. At the same time, making multiple changes to a model, often

based on imperfect or qualitative information about the substrate, presents a risk for the

reliability of the results. Firstly, every changed parameter drives the model further from

the healthy-cell situation for which it was parametrized. How can we be confident that the

predictions of a model are still valid when using it to extrapolate outside of its validated

range? Secondly, when changing multiple parameters at once, how can we make sure that

other features of the model are not inadvertently lost? And if changes can be made without

invalidating the model, doesn’t that suggest the model is underconstrained so that there is a
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danger of overfitting?4 Closely related to the issue of reliability, is that of reproducibility of

modeling and simulation results. For example, do papers provide all the information needed

to recreate the described model validation, or to re-run simulation experiments? And will

models by different groups provide the same results? If cardiac modeling is to be used for

risk-prediction (such as in the studies by Hoefen et al. (2012); Arevalo et al. (2016) and

Cummins Lancaster and Sobie (2016)), these questions of reliability need to be addressed.

These concerns are shared by the United States Food and Drug Administration, (FDA)

which is now investigating the use of in silico prediction of drug arrhythmogenicity (in par-

ticular model-based prediction of QT prolongation, see Parekh et al., 2015). Their “Cardiac

Modeling” research project5 focuses almost entirely on VVUQ: verification (are the simula-

tion methods mathematically correct and accurate?), validation (is the model realistic for

the situation being investigated?), and uncertainty quantification (what is the error in the

input and how will it affect the predictions?). The questions raised above mostly concern

validation, although methods for dealing with variability are strongly related to those used

in uncertainty quantification (see Pathmanathan et al., 2015; Mirams et al., 2016).

The following subsections each discuss an aspect of validating simulation results, and high-

light some approaches taken by the cardiac modeling community to tackle the questions

raised above.

8.3.1 Multi-model testing and model comparison

One way of assessing the reliability of a simulation result is by repeating the experiment

using a different model and comparing the results (see for example Mann et al. (2016) and

the editorial by Gong et al. (2017)). If there is a clear overlap between results from different

models, this supports the idea that the changes are physiologically realistic, and do not push

the models too far from their validated state. Conversely, a lack of any consensus would

indicate that this is an area where models react sensitively to change. If some models do

produce the intended result, careful work would need to be done to find out if this is due

to their greater predictive power, due to the data the models were parametrized with6, or

simply due to chance. Additionally, it may be possible to combine the predictions of multiple

models into probability estimates, for example to estimate arrhythmogenicity of a particular

situation.

The most straightforward way to perform multi-model investigations is to perform all initial

experimentation in a single model, establish a test-case, and then double-check by imple-

4 A saying often quoted in this context, attributed to the physicist John von Neumann, is “With four
parameters I can fit an elephant, with five I can make him wiggle his trunk.” (Dyson, 2004). This was shown
to be true half a century later by Mayer et al. (2010), who cheated slightly by using complex parameters.
Perhaps typically, their efforts produce an abstraction that does little justice to elephant physiology.

5 See http://www.fda.gov/MedicalDevices/ScienceandResearch/ResearchPrograms/ucm477370.htm
6 In fact, another area where little work has been done is in comparing how well different AP models fit

the same data set.
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menting similar changes in other models. With custom written code, this is an arduous

task as it involves the implementation of multiple models, possibly written in different

programming languages. But by using tools that can import models from exchange for-

mats such as CellML (Cuellar et al., 2003) this can be done with relative ease. A more

extensible way is to use a library of models, all written in a standard form or annotated

in a manner that allows simulation software to automatically identify and modify model

variables. Myokit can be used for both manual and automated model comparison, as is

shown in the example in Section 3.3. The most extensive tool for model comparison to date

is the ‘Cardiac Electrophysiology Web Lab’ (Cooper et al., 2015a), which is available at

http://chaste.cs.ox.ac.uk/WebLab. This tool contains a library of annotated CellML

models and a set of experiments (written in a custom experiment description language),

and allows users to run each experiment on each model and compare the results. A useful

next step would be to standardize the annotations used in the Web Lab, and to set up an

interface to let other tools interact with it directly.

8.3.2 Automated validation

A large part of model development consists of validating the model’s predictions against

several experimental data sets. As this is a labor-intensive process, it would make sense

to automate this task. This would also allow automated (re-)validation to be performed

after any change to the model (provided the validation experiments and data are publicly

available, see Section 8.3.4). With such an approach, the complex changes needed to recreate

an arrhythmic substrate could be carried out with greater confidence. Since many of the

outputs a model should be validated against are emergent properties (e.g., the APD, APD

restitution, conduction velocity), single and multi-cell simulation is a vital part of model-

data comparisons.

Automated validation is similar to model comparison, so it would be useful to combine

the two tasks. Tools like the aforementioned ‘Web Lab’ can compare models written in

CellML with each other, but as of yet no system has been created that can also incorporate

experimental data or multi-cellular simulations. Myokit can provide a partial solution due to

its multi-cell capabilities and patch-clamp data import, but a greater effort, both technical

and organizational, will be required to deal with this issue in a systematic manner. An

overview of the remaining challenges as well as the future perspectives for systematic model-

model and model-data comparisons is given by Cooper et al. (2015b).

Once the technical issues have been dealt with, more work is needed to learn how to interpret

differences seen in such comparisons. In the light of variability (as well as noise), how

different do two model outputs need to be before the models can be said to disagree? Can

we update our models to not only match experimental averaged data, but also accurately

predict output ranges? And can we validate different model outputs independently, or do
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relationships between all used outputs need to be considered? Such questions will need to

be addressed in order to fully make use of automated model comparison and validation tools

and understand the role of variability in modeling of the cardiac cellular AP.

8.3.3 Free parameters and variability

Since their introduction, the number of parameters in models of the cardiac AP has increased

steadily: from 5 named and 41 unnamed parameters in Noble (1962) to 222 named and 938

unnamed parameters in Heijman et al. (2011). Not all of these parameters can be measured

directly, and as a result many of them are set by inspecting the model’s output and tuning the

parameters until the output matches the modeler’s expectations (either manually, or using

the method outlined in Section 8.2.1.1). However, given the size of modern models, it is likely

they are still underconstrained. A study by Sarkar and Sobie (2010) addressed this issue

directly, and showed how adding more model outputs (i.e., validating against a bigger data

set) and applying sensitivity analysis can be used to reduce the number of free parameters in

models of the AP. However, since their results regarding the different maximum conductances

mirrored those of Marder and Goaillard (2006), the work by Sarkar and Sobie also became

a seminal work in the study of variability in models of the cardiac AP (Sarkar et al., 2012;

Weiss et al., 2012). If we take biological variability into account, the question arises which

parameters can vary because the model is underconstrained (i.e., where we don’t have enough

data) and which can vary because this accurately reflects the underlying biology. This is a

question that can only be answered with more quantitative experimental data on variability

in the processes underlying the cardiac AP, such as provided in Chapter 5. Gathering such

knowledge is critical if we want to be able to compare different models (e.g., to know when a

model can be rejected). Cherry and Fenton (2007) ran simulations using two different models

of the canine AP and found several differences. They too argued that this showed the need

to validate against multiple outputs, but also suggested detail in models should be reduced

when such validation data is unavailable. A recent overview of the issues with parameter

tuning in models of the cardiac AP, and the challenges of variability and personalization,

was given by Krogh-Madsen et al. (2016).

8.3.4 Data sharing and reporting standards

Sharing of models, methods, simulation details and experimental data is required for model

validation and simulation experiment reproducibility. Model code is frequently shared online,

and projects such as CellML (Cuellar et al., 2003) and the Physiome model repository (Yu

et al., 2011) have been set up to standardize and promote this procedure. Sharing of methods

is also common, with projects such as OpenCOR (Garny and Hunter, 2015), Chaste (Mirams

et al., 2013) and Myokit all freely available online. However, to re-validate a model after

downloading and making changes, users will also need access to the original (experimental)

validation data and the simulation experiment code needed to (computationally) reproduce
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it.

Projects such as MIASE (Waltemath et al., 2011a) and SED-ML (Waltemath et al., 2011b)

have been set up to promote and standardize sharing of simulation code and improve re-

producibility of biophysical simulation experiments. However, at the time of writing tools

implementing SED-ML are scarce (with the notable exception of OpenCOR), and the lan-

guage does not yet have the features required to describe realistic, complex computational-

electrophysiology experiments (Cooper et al., 2015a). In this respect, tools like Myokit,

which are intermediate between custom, free-form code and a fully standards-based ap-

proach, can perform a valuable transitional function.

For experimental data, the MICEE draft standard and website exist to aid in reporting

(Quinn et al., 2011, see also http://micee.org), but a major effort for online sharing of

electrophysiological data has yet to be made, and obtaining the data to (re)validate a model

is a challenging task. In part, this is because the amount of data needed to create an

AP model is so large, it almost inevitably contains data from multiple experiments from

independent labs. The issue is further complicated by the fact that large parts of models are

often ‘inherited’ from older ones, which complicates determining the full data set needed for

validation (Niederer et al., 2009; Bueno-Orovio et al., 2014).7 In addition, existing formats

will need to be updated to incorporate the possibility of natural variability in models and

experimental data, as well as relationships between the variability in different parameters

(see Chapter 5). Nevertheless, to create reliable predictions, both the infrastructure and the

willingness to share and compare experimental data and simulation results still need to be

generated in the upcoming years.

8.4 Variability in multi-scale models of the AP

Conventional AP models are based on averaged data. For example, when creating a model of

an ionic current an experimenter may record it in a number of cells, determine some physio-

logical parameters (for example time constants and midpoints of activation) in each of them,

and then calculate the average value of each parameter and pass it to a modeler. This is

a valid approach if all variability in the parameters is due to measurement error. However,

given the findings of Marder and Goaillard (2006) and the results presented in Chapter 5,

it is clear this approach misses a great deal of the biological complexity of real myocytes by

replacing a diverse population with a single, idealized, cell. Furthermore, it is not at all guar-

anteed that using the mean for each parameter will result in a physiologically viable model.

Instead, a future challenge for AP models will be to (1) obtain measurements of the natural

7 This complicated heritage, combined with the experimental difficulty and cost of obtaining data, has
led to the situation where models include data gathered in different species, in different cell types, and using
different procedures. Besides complicating the practicality of gathering and incorporating all the relevant
data, this has a negative effect on the applicability of the resulting validation.
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variability in all relevant parameters, (2) where possible, to record any relationships between

the parameters (for example the relationship between midpoint of activation and inactiva-

tion seen in Chapter 5), (3) to update reporting standards and model languages to include

variability and parameter interdependencies, (4) to further develop simulation methods that

incorporate variability, and (5) to interpret what the existence of such variability means

for the use and development of multi-scale models. These challenges are not independent.

For example, deciding where to start measuring variability requires some estimate of where

variability is most likely to be found and where it will have the most prominent effects on the

AP or AP propagation. Despite these challenges, work in simulating variability has already

shown promising results. For example, including hypothesized variability in conductance

levels can predict variability in drug-induced APD prolongation (Britton et al., 2013) and

improves predictions for the risk of drug-induced Torsades de Pointes (Cummins Lancaster

and Sobie, 2016). We briefly discuss the challenges of measuring and simulating variability

below.

8.4.1 Measuring variability

Most work on variability in AP model parameters so far has focused on variability in the

expression levels of ion channel alpha-subunit genes, which correlates strongly with ion

current maximum conductance. This type of variability can be measured by collecting

several cells and measuring expression levels using techniques such as PCR. An advantage

of PCR is that it can measure the transcription levels of multiple channel proteins in a

single cell, allowing the relationship between them to be studied. As Schulz et al. (2006)

showed, it is also possible to combine PCR and voltage-clamping to study channel expression

levels and current characteristics in the same cell. An advantage of studying variability in

maximum conductances is that the number of variables to consider is limited by the number

of currents, and so is in the order of 10-20.

In Chapter 5 we investigated measuring variability in the kinetical parameters of an ion

current (INa). We found this required careful consideration of (1) noise and artefacts in

the recorded currents, (2) imperfect control of the membrane potential, (3) the methods

used to analyze the recordings. Taking these three factors into account, we performed

measurements of the time constants of inactivation in INa and found they varied considerably,

with what appears to be a skewed distribution. Importantly, kinetics of fast and slow

inactivation were not independent, but showed a moderate linear correlation. Another study

by Pathmanathan et al. (2015) investigated the steady states (i.e., midpoints and slopes of

(in)activation) of INa, and found these too varied between cells. Their study used existing

data, and focused mainly on the mathematical aspects of quantifying variability instead of

investigating the experimental side. Interestingly, they studied the same problem using two

different data sets from the same laboratory, and discovered that the variability between the

data sets exceeded that within the data sets, which matches with our observations about
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the midpoints of (in)activation in Chapter 5. Our own literature review data of midpoints

of activation and inactivation is consistent with the above results, but also shows a strong

linear correlation between the midpoints of activation and inactivation.

To the best of our knowledge, this work provided the first direct investigation of variability in

ion current model parameters. An important conclusion for AP model development is that

parameters do not vary independently, but are correlated. This means studies using cell-to-

cell variance cannot sample all parameters from independent probability distributions but

should take care to incorporate parameter covariance. Similar studies for the other major

currents are needed, preferably with very large numbers of cells, to gather the data needed

to work towards variability-aware modeling.

8.4.2 Modeling and simulating variability

Incorporating (known or hypothesized) variability into models of the AP presents several

challenges. First, model definition languages (such as CellML and Myokit’s mmt format) need

to be updated to allow parameter variability to be specified. Unofficial CellML extensions

to allow this have already been proposed and used (Walmsley et al., 2013), but may need to

be extended to allow parameter dependencies to be included. Next, simulation methods will

need to be updated to allow the incorporation of variability. One way to do this is to simply

re-run simulations many times with different parameter values, drawn from the appropriate

distributions (Romero et al., 2009; Walmsley et al., 2013). Linear regression-analysis has

been proposed as a way of interpreting the results, by quantifying the impact of each varied

parameter on the simulation results (Sarkar and Sobie, 2010, 2011). To deal with the expo-

nentially growing number of possible models when varying multiple parameters, a technique

known as Latin hypercube sampling has been used (McKay et al., 1979; Britton et al., 2013).

The required number of simulations can be reduced even further by training Gaussian pro-

cess emulators to the output of simulations (Chang et al., 2015; Johnstone et al., 2016).

These also provide a way of investigating the model’s sensitivity to different parameters. An

interesting extra step when working with populations of models, is to calibrate the popula-

tion by accepting or rejecting models based on higher-level characteristics, such as the shape

of the AP (Britton et al., 2013; Muszkiewicz et al., 2016). This method allows variability

to be used in simulations even when the true underlying parameter distributions are not

known. A good overview of methods to incorporate variability into cardiac AP models can

be found in Walmsley (2013).

8.4.3 Personalized modeling

A different way of dealing with variability is by personalizing models. For example, whole-

heart (or more commonly whole-ventricle) simulations, often already use patient-specific

geometries (Aguado-Sierra et al., 2011; McDowell et al., 2012; Arevalo et al., 2016) and this
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approach was also used in Chapter 7. However, electrophysiological properties can also be

personalized using either knowledge of disease-induced changes (Reumann et al., 2009) or

direct measurements of clinical data (Lombardo et al., 2016; Mann et al., 2016). Again,

knowledge of variability in AP model parameters will be highly valuable here, as it can

indicate where variability is expected and measurements need to be done. However, while

modern techniques such as hiPSC may enable a wealth of data about individual patients

to be obtained, the large number of parameters in multi-scale AP models suggests that a

combined approach of personalization and variability-including modeling may be the most

appropriate tool for patient-specific investigations.

8.5 Conclusion

Multi-scale models are used to integrate experimental data from different sources and help

us gain a deeper understanding of cardiac electrophysiology. Simulation is an important part

of this systems approach to biology, as it enables the study of phenomena that emergene

from the interaction of biological processes at the different scales. Models of the cellular

AP form the back-bone of these simulations. They are created by combining models of the

ions, channels, and transporters they contain, and cell models in turn can be combined into

tissue models. Exploring smaller and larger scales is limited by computational power, but

good results can be obtained by carefully chosen trade-offs between detail and simplicity. As

the substrate to develop an arrhythmia is typically complex, recreating substrates requires

making several changes to models of the healthy cell. The issues this creates for the reliability

of multi-scale models can be partially addressed by software tools for multi-model testing

and automated validation. However, major data-sharing (and simulation sharing) efforts are

required to make validation of models a routine activity for model users as well as developers.

Incorporating biological variability into multi-scale models is challenging computationally,

but the recognition of biological variability also raises new questions about how to interpret

model comparisons and validation. In addition, much new experimental work is needed to

characterize the variability in the electrophysiological properties of cardiomyocytes. Many of

these issues are interrelated, for example the recognition of widespread biological variability

has a profound impact on genotype-phenotype relations, model validation and development

and will impact the way experimental results are reported. Conversely, investigations into

variability rely on excellent experimental work, as well as theoretical work into parameter

estimation, identifiability, stochastic simulation and constraining of free model parameters.

As a result, computational tools can play a major part in the ongoing study of cardiac

arrhythmia, not just through the development of new state-of-the-art technologies, but also

through standardization and sharing of existing work. Indeed, sharing is a key point for

the future, as none of the abovementioned problems can be tackled in isolation. Instead,

future theoretical and experimental work should continue the fruitful interplay of model
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and experiment, and proceed in a manner strongly informed by the complexities of cardiac

electrophysiology.
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Summary

The rhythm of the heart is regulated by processes at the genetic, molecular, cell, tissue,

and organism scales. Computational models of the cardiac cellular action potential (AP)

can be used as the basis for multi-scale models that connect these scales. This has made

them essential tools in the study of cardiac arrhythmias. Far from existing in theoretical

isolation, these models are widely used to interpret experimental data, design new experi-

ments and make predictions about the results. Indeed, the complex and multi-faceted nature

of arrhythmogenesis requires an ever-increasing level of cooperation between modelers and

experimenters and the integration of knowledge from several fields in a systems approach

to physiology. In this thesis, we show how software tools can aid in this process, we use

simulations with AP models to connect processes at different scales, and we investigate the

complexity seen even at the level of ionic currents.

In Chapter 1, the topic of this thesis is briefly introduced and an overview of the various

chapters is given. Chapter 2 then introduces the physiology and modeling of ion currents,

the cellular AP, and electrical propagation from cell to cell.

Chapter 3 describes Myokit, our novel tool for AP model development, multi-scale simu-

lation, and analysis. Myokit’s ease of use and straightforward modeling language facilitate

model sharing and re-use, while its graphical user interface and extensive toolbox allow

simulation and analysis methods to be shared with a wide audience. Import and export

facilities allow model exchange with various formats, and methods to import patch-clamp

data and export patch-clamp protocols are provided. Fast single-cell simulation is imple-

mented using CVODE, and a versatile multi-cell engine is provided that can run on the

GPU using OpenCL. In addition, Myokit contains advanced simulation engines that can

calculate partial derivatives, evaluate system stability or run fast simulations with Markov

models. Three examples are provided that illustrate Myokit’s use in single and multi-cellular

investigations of Brugada syndrome, its use in model comparison, and its capabilities for

fitting ion-channel models to patch-clamp data.
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Chapter 4 examines the prospect of speeding-up simulations by replacing slow-to-evaluate

mathematical expressions with less computationally expensive ones, and for this we focus on

splines. We find spline approximations can be used to speed up equations commonly found

in AP models, but that the relative number of such equations is lower for the larger published

models. In addition, we find that GPU-parallelized simulations, which are increasingly used

for large multi-cellular work, do not benefit from the technique. So while the principle of

the method appears sound, its applicability to AP simulations is limited and other fields

may benefit more from this technique.

Chapter 5 examines variability in the kinetics of the fast sodium current INausing CHO

cells expressing human SCN5A. We show that a simple voltage-step experiment, performed

under controlled conditions, elicits a current response that varies in shape and size from cell

to cell. The time constants of inactivation vary with a skewed distribution, and a moderate

linear correlation between the two constants can be seen. Through a careful analysis of our

experimental setup we show that this variability is larger than expected from experimental

error alone. By comparing the calculated standard deviations with those seen in myocyte

experiments we show that in this case CHO cells are a good match for human myocytes.

Next, we perform a literature review and see that the midpoints of activation and inactivation

show a similar wide spread in all reported experiments and that there exists a strong linear

correlation between midpoint of activation and midpoint of inactivation. Finally, we show

how the observed variability can affect the cellular AP, and argue it should be reported as

a feature of the ionic currents rather than a weakness of the experiments.

Chapter 6 contains an extensive review of published nonsynonymous missense mutations in

SCN5Aand their effect on INa. Using this data, we investigate if machine-learning techniques

can be used to predict mutation-induced changes in INa. We find that 610 out of 11923

(5.1%) of possible missense mutations have been studied, and that in many cases the location

of mutations on the gene correlates with a specific change in function. However, the effects of

the amino acid substitutions do not show any immediately useful patterns. Using machine

learning techniques on this data set, we can create better-than-chance predictions of an

SCN5A mutation’s effects, but the general accuracy is low (around 70%). By carefully

examining the results we show that this is mainly due to a strong bias in the dataset,

combined with inconsistencies and a lack of suitable features to describe mutations in a

meaningful manner.

Chapter 7 investigates the use of AP models in reconstructing heart-surface potentials

from noninvasive measurements of body-surface potentials in a technique we call physiology-

based regularization (PBR). We use AP models to simulate wave propagation over the heart

and then perform singular-value decomposition to create a small set of base patterns from

which the more complicated patterns can be constructed. By restricting the heart-surface

potential patterns to ones composed from this basis, more accurate reconstructions can be
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made. We show that our method recovers more details of heart-surface electrograms than

traditional regularization methods, obtains higher correlation coefficients with invasively

measured signals, and leads to improved estimates of recovery times. By using different

models and simulation methods, we show that adding temporal detail to the used AP models

does not improve the results, and that simplified propagation models are adequate for this

purpose.

Finally, Chapter 8 discusses the use of multi-scale models to link ion-channel function to

arrhythmogenesis and body-level observations, in a systems approach to electrophysiology.

We argue that the complex relationship between molecular-level effects and diseases requires

simulation, so that the development of tools like Myokit is a worthwhile investment for

years to come. At the same time, the multifactorial nature of arrhythmogenesis implies

that modelers will necessarily push models far from the situations for which they were

created, which increases the scope for errors. We discuss the role of model comparison,

automated validation, and data sharing in addressing this problem. The existence of natural

variability increases these difficulties, and changes the way comparisons of models to other

models or experimental data should be interpreted. Yet it also has the potential to explain

observed differences in drug-response or the clinical manifestation of ion-channel mutations,

so that a deeper understanding of variability is vital for future investigations. We conclude

that problems in cardiac cellular electrophysiology can best be tackled with a combined

experimental/theoretical approach.
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Valorization

Since 2013, Maastricht University requires its doctoral theses to come equipped with a “Val-

orization Addendum”, with the intended goal of increasing the “visibility and societal impact”

of its research. Among the examples of such “value creation” are open source tools, software

and the process of “making models and systems available” (Maastricht University Board of

Deans, 2013). This chapter is submitted to comply with this requirement.

Computational models of the cardiac action potential (AP) can form the basis of multi-

scale models of cardiac physiology and pathophysiology (Southern et al., 2008). In the

past decades, several studies have shown how such models can be modified to include the

molecular changes caused by genetic defects or drugs, so that their effects on the cell, tissue,

and organ levels can be predicted (Chapter 8). The mechanistic insights and predictive

power these models provide is badly needed, as the link between such molecular changes

and arrhythmias is complex and still incompletely understood (Weiss et al., 2015).

Setting up multi-scale simulations can be a time consuming process and, even for cutting-

edge science, often involves reimplementing existing techniques. Having re-usable, model-

independent software tools can save time and effort, can make numerical methods available

to a wide audience, and can help to shift the focus of the experimenter from computational

aspects to biology. Chapter 3 of this thesis introduced Myokit, a tool for (multi-scale)

modeling of the cardiac AP. Myokit contains methods to create models of ionic currents

(possibly altered by drugs or mutations), to integrate them into models of the cellular AP,

and to use them in simulations of cardiac tissue. In addition, Myokit has support for model

import and export, removing the need for manual model (re-)implementation. Chapters 3,

5, and 7 contain examples of Myokit’s scientific use.

In this valorization addendum, we highlight examples of non-academic use of AP-model

based simulations. We then discuss how we have made Myokit, our tool for such work,

available to the community. Finally, we look at the first, promising, signs of early adoption

of Myokit outside of Maastricht University.
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AP-models have applications beyond academia

Simulations of the cardiac cellular AP have a long history in science, where they have been

used to investigate the basic principles of cardiac electrophysiology (see Chapter 2 and

Chapter 8). Sharing and promoting Myokit among an academic audience has an impact

on society, as it has the potential to accelerate scientific work via the sharing of methods

(included in Myokit) and models (using Myokit’s support for exchange languages such as

CellML, see Hedley et al., 2001). This type of knowledge dissemination is discussed in detail

in the introduction to Chapter 3. Outside of science, the predictive power of AP-model

based simulation is increasingly being recognized. The examples listed below show how

simulations can be used in risk stratification (clinical use), drug development (industrial

use), and regulation (governmental use).

Hoefen et al. (2012) showed that simulations of transmural repolarization prolongation can

be used to distinguish low-risk and high-risk mutations in LQT1-syndrome with increased

specificity and sensitivity. This provides a direct use of simulation in the optimization of clin-

ical treatment. Similar transmural simulations were used as the first example in Chapter 3.

Risk of inducing torsades de points is a common reason to reject drugs during development.

Cummins Lancaster and Sobie (2016) simulated the effect of several drugs on the human cel-

lular AP, and found that this provided more reliable predictions of their arrhythmogenicity

than existing in vitro assays. To increase the reliability of their predictions, they repeated

their simulations in multiple models of the AP, much like in the third example shown in

Chapter 3. The increasing interest of regulatory bodies to use mechanistic cardiac modeling

in drug safety testing is discussed in depth in a review by Davies et al. (2016). While Myokit

is aimed primarily at scientific users, it could easily be used outside of academia in pilot

projects, exploratory studies, prototyping, or as the inspiration for specialized commercial

software.

Myokit is available to the community

Since the start of its development, Myokit has been made available online. This has allowed

scientists outside of Maastricht to use it, has generated valuable feedback for its develop-

ment, and has promoted the visibility of multi-disciplinary biomedical research at Maastricht

University.

We have taken care to provide adequate documentation to enable external use. A PDF ver-

sion of Myokit’s documentation currently runs to 277 pages (although the same information

is more easily accessed via the Myokit website). In addition, the Myokit website contains

several examples of its use and further examples were provided with our recent publication

about the tool (Clerx et al., 2016). In 2014, we organized a workshop to introduce Myokit

to scientific users, which attracted more than 30 international participants.
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First work on Myokit

First test version online

First stable version online

First public presentation

First external mention

1st published external use

First journal
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4th

Figure B.1: Myokit development, publications and early adoption. Recent events include its first public
presentation (Clerx et al., 2014), the first time Myokit was mentioned in a peer-reviewed article by an
external group (Garny and Hunter, 2015), the first time it was used in a peer-reviewed article by an external
group, (Law and Levin, 2015) and publication of the article that formed the base of Chapter 3 (Clerx et al.,
2016).

Myokit is fully open-source and can be downloaded and used free-of-charge under the GNU

General Public License (GPL, see also http://myokit.org). In addition, Myokit itself is

based entirely on open-source components such as Python, NumPy/SciPy (Jones et al.,

2001), Matplotlib (Hunter, 2007) and Sundials (Hindmarsh et al., 2005). Combined with

an operating system such as GNU/Linux, this creates an entirely open-source environment,

available free of charge. In addition, Myokit can be run on Windows or OS/X (Apple).

Myokit is already being used outside of Maastricht

Myokit development started in December 2011 and it was first presented publicly in Septem-

ber 2014. The first peer-reviewed article discussing it in detail was published in January

2016. A brief timeline of its development and publication is provided in Fig. B.1 and an

extended version can be found on the Myokit website (http://myokit.org/changelog).

Given the time it takes to adopt a new work flow, perform research, and have it published,

it will take some time before Myokit’s success in the (scientific) community can be assessed.

Some preliminary data is presented below. First, Myokit has been downloaded over 600

times as of July 2016. But while some effort1 has been made to filter real users from auto-

mated downloads, this may not be an accurate statistic. Secondly, a mailing list was started

in January 2016 where users can receive updates and ask questions about Myokit, so far this

has 15 subscribed users (which is similar to older, more established tools like OpenCOR).

Another measure of Myokit’s visibility came in 2016, when its principal developer was elected

for a three-year term on the CellML editorial board2. However, the best feedback has come

in the form of personal communication and citations. Based on such feedback, we know of

at least three instances where Myokit has been used for teaching outside of Maastricht (at

both Bachelor and Master level, see http://myokit.org/publications). The first study

(by scientists other than the Myokit developers) using Myokit for simulations came in 2015,

1Filtering was applied by excluding any IP address with 20 or more downloads, excluding any downloads
with a ‘user-agent’ indicating an automated search rather than a human user and by requesting that search
engines do not download the tracked files.

2See https://www.cellml.org/about/news/cellml-editor-election-results-2016
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Used & Cited

Used

Compared

Teaching

Development

Figure B.2: The blue dots show locations where papers were published using Myokit. Green dots indicate
known Myokit users. Red dots indicate mentions of Myokit in papers about related software, while yellow
dots indicate universities where Myokit was used for teaching. Finally, the grey dot indicates Maastricht,
where Myokit was developed.

just before the first journal article describing Myokit was published (Law and Levin, 2015).

Three further publications, including two in high-ranking journals, emerged in 2016 and

early 2017 (Park et al., 2016; Boukhabza et al., 2016; Schmidt et al., 2017). Three more

publications refer to Myokit when comparing electrophysiology software, which further adds

to the visibility of Maastricht University in this field (Garny and Hunter, 2015; Castro et al.,

2016; Onal et al., 2016). Fig. B.2 shows the geographic locations of known early Myokit

usage and citations.

Conclusion

Multi-scale simulations based on models of the cardiac cellular AP are increasingly being

used outside of academia. We have developed Myokit, a tool for such simulations and made

it available online with a permissive license and extensive documentation. This has resulted

in early adoption and helped (1) to disseminate research done at Maastricht University to

a wider community and (2) to increase the world-wide visibility of Maastricht University’s

computational electrophysiological research.
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Kléber, A.G., Rudy, Y., 2004. Basic mechanisms of cardiac impulse propagation and associated

arrhythmias. Physiological Reviews 84, 431–488.

Kline, R., 1993. Harold Black and the negative-feedback amplifier. Control Systems, IEEE 13,

82–85.

Kneller, J., Ramirez, R.J., Chartier, D., Courtemanche, M., Nattel, S., 2002. Time-dependent tran-

211



References

sients in an ionically based mathematical model of the canine atrial action potential. American

Journal of Physiology – Heart and Circulatory Physiology 282, H1437–H1451.

Kohl, P., Crampin, E.J., Quinn, T., Noble, D., 2010. Systems biology: an approach. Clinical

Pharmacology & Therapeutics 88, 25–33.
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Núñez, L., Barana, A., Amorós, I., de la Fuente, M.G., Dolz-Gaitón, P., Gómez, R., Rodŕıguez-
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