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Abstract

Novel protocols for whole-cell patch clamp current
recordings have the potential to uniquely identify Markov
model parameters. For the fast sodium current, which op-
erates at very small time scales, measurement noise and
amplifier imperfections can affect the recorded signal in
non-trivial ways. We investigated the unique identification
of the kinetical parameters of the fast sodium current from
imperfect whole-cell patch clamp recordings.

1. Introduction

The cardiac fast sodium current INa is the driving force
behind the rapid upstroke of the cellular action potential
(AP) and a critical factor in achieving a healthy conduc-
tion velocity (CV) in cardiac tissue. Drugs and mutations
affecting SCN5A, the gene encoding the cardiac sodium
channel’s alpha sub-unit, have been linked to a wide va-
riety of heart diseases. Markov models that describe the
current in detail have been shown to produce accurate rep-
resentations of channel behavior. By incorporating such
models in single or multi-cellular models, the effects of
changes to INa can be studied at multiple scales, allow-
ing clinical investigators to create personalized treatment
strategies. By observing the differences between models
of healthy and non-healthy cells, we may learn something
about the underlying disease mechanisms.

Markov model parameters can be estimated using data
gathered from patch clamp experiments in the whole-cell
configuration [1]. By performing these experiments in ex-
pression systems, mutated and wild-type channel currents
can be compared [2]. A theoretical study by Fink and
Noble showed that, unlike single channel measurements,
whole-cell patch-clamp data can be used to identify pa-
rameter sets that provide a locally unique best fit, even in
the presence of noise.

If a Markov model recreates an observed behavior, we
can use it to model ”upwards” to the cell, tissue, and organ
level. This works whether or not the model structure has
any basis in reality. However, if we want to look ”down”
and learn something about the channel from a model of its

current, we require a model where similarity of parame-
ters correlates with similarity of channel behavior. Since
Markov model rate equations are not commonly derived
from first principles, and parameter values are obtained
through numerical optimization, we require local identifi-
ability as a necessary (but not sufficient) condition for the
parameter values to have a meaningful interpretation.

In this study, we apply the type of protocol suggested
by [3] in wet lab experiments and examine the practical
problems that arise with a view to parameter identifiabil-
ity. First, we implement a numerical identifiability check
and use it to create a short step voltage protocol that can
identify our model’s parameters. Next, we perform patch-
clamp experiments using the new protocol and examine the
various sources of error. Finally, we discuss the limitations
of our work and make recommendations for further stud-
ies.

2. Methods & Results

Whole-cell INa is calculated as

INa(V, t) = g ×O(V, t, p)× (V − E)

where t is time, V is the membrane potential and E is
the cell’s reversal potential for sodium. The current con-
ductance when all channels are open is given as the con-
stant g so that all variation of conductance in time happens
through changes in the fraction of open states O(V, t, p)
where p is the set of parameters we aim to identify. This
fraction is determined using a Markov model formulation
[1–3]. For our experiments, we used the model presented
in [3]. This model uses the structure of [2] but has alterna-
tive formulations for the rate equations which avoid redun-
dant parameters. A graphical representation of the model
states is given in Figure 1.

Currents used in identification are elicited by applying
a sequence of voltage steps and measuring the resulting
current. In patch-clamp experiments, this is done by high-
frequency circuitry in the amplifier that monitors V and
injects current until the desired potential is reached. The
capability of a protocol to find a locally unique set of pa-
rameters can be tested using simulations [3]. In a simulated



Figure 1. The Markov model structure used to simulate
INa .

experiment, the voltage protocol is applied to a cell and the
derivative of the model’s open state(s) with respect to the
parameters to identify is calculated at each point in time.
A matrix of normalized parameter sensitivities is then cre-
ated and tested for rank-deficiency: if each parameter has a
linearly independent contribution to the open state at some
point in time, the matrix should have full rank. By cal-
culating the matrix eigenvalues and using a rank-revealing
QR decomposition an identifiability score for each param-
eter and a cut-off score for identifiability can be defined
[3]. To find the derivatives ∂O(t)/∂pj a forward Euler
simulation was run using an automatic differentiation data
type. In this method, each time an operation is performed
on one of the model states, both its value and the value
of its derivatives to each of the parameters pj are calcu-
lated. We implemented this in Myokit [4], our framework
for computational cellular electrophysiology.

Parameter identification proceeds by minimizing a loss
function over all m steps in the voltage protocol. We de-
fined:

S(p) =

m∑
k=1

√√√√∑
t

(
Ik(t, p)− Iref,k(t)

Imax,k

)2

Here, for each step k, Ik is the simulated current, Iref,k is
the corresponding measured current and Imax,k is the max-
imum absolute measured current:

Imax,k = Iref,k(arg max
t
|Iref,k(t)|)

Simulations of Ik(t, p) were performed using Myokit’s
Simulation class. As no derivative information is avail-
able for S a particle search optimization (PSO) [5] was
employed, which has been shown to work well for this
type of problem [6]. A basic parallel version of PSO was
implemented in Myokit that uses multiple CPU cores to
calculate solutions for the independent particles.

Patch-clamp recordings were obtained from a stable cul-
ture of Chinese hamster ovary (CHO) cells, transfected
transiently with wild type human SCN5A (isoform b) and
GFP to identify successfully transfected cells. Experi-
ments were performed 24 hours after transfection in the
first few hours after trypsinization. Patch-clamp exper-
iments were performed using an Axopatch 1D amplifier
(Axon Instruments, Foster City, CA) and WinWCP V4.8.6
(Strathclyde Electrophysiology Software). Signals were
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Figure 2. (A) Protocol A, designed to uniquely iden-
tify all parameters of a Markov model of INa in a single
pass. (B) The response of a single CHO cell expressing
wild type SCN5A. The cell’s capacitance was measured
as C = 11.1pF. The simulated current based on a naive
parameter fit is shown in red (dashed line).

sampled at 100kHz but filtered at 10kHz using the analog
low-pass filter on the amplifier.

A voltage step protocol was defined based on the second
protocol in [3] but with faster steps and voltages chosen to
elicit a stronger INa current. Between runs, the cell was
held at -120mV for 740ms, allowing the channels to return
to a close-to-stable state while keeping total experiment
time at 1s. By checking ∂O(t)/∂pj we confirmed the pro-
tocol had the power to identify all parameters in the model.
The result is shown in Figure 2 A.

The sodium current measured in a in a CHO cell stimu-
lated with this protocol is shown in Figure 2 B and is rep-
resentative of the results in the eight cells we tested. The
shown data has been post-processed to remove leak cur-
rent, capacitance artifacts and stochastic noise in ways that
will be explained below. A simulation of the same experi-
ment with a model fit to this data is shown in the same fig-
ure. As the figure shows, the model recreates the general
features of the current but does not match it well, particu-
larly in the decaying phase.

3. Discussion

We identified the following possible sources of error in
the fit: (1) The unknown non-Markov parameters E and
g. (2) Noise in the current recording. (3) Capacitative arti-
facts due to imperfect filtering of cell and pipette charging
currents. (4) Changes in channel response due to a non-
negligible charging time of the cell membrane. (5) Voltage
dependent leak currents, leading to a shift in the baseline
current at each step. (6) Imperfections in the protocol, due
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Figure 3. (A) Leak current versus command (step) poten-
tial in a small cell (C = 11.1pF). (B) Decay of INa is well
fitted with a double exponential.

to a failure to adequately anticipate 1-5. In the following
paragraphs, we deal with the first five points individually
and examine the consequences of each for model identifi-
ability.

While there are various methods of estimating the rever-
sal potential E, the g of a patch-clamped cell is difficult to
establish. To check the impact of estimating both parame-
ters in conjunction with the Markov model parameters we
modified our method to test not ∂O/∂pj but ∂INa/∂pj ,
allowing ∂INa/∂E and ∂INa/∂g to be calculated and in-
cluded in the test.

Stochastic or non-periodic noise enters the recordings
from a variety of sources. To reduce this type of noise,
we made use of our protocol’s short length by running it
sixty times and averaging the results. This reduced noise
levels to approximately±5pA. After scaling the model’s g
to match experimentally observed current magnitudes, we
incorporated this information into the identifiability check
by filtering the sensitivity matrix, removing all data from
times when INa(t) < 5pA.

A similar strategy was used to deal with incompletely
compensated capacitative currents. These occur at every
change in command potential and, in our data, typically
obscure the next 0.5 to 1 millisecond of the current mea-
surement. We filtered the sensitivity matrix by removing
all points from the first millisecond after each step.

Leakage currents occur through the cell membrane and
various parts of the set-up. Ideally, this would lead to a
current linearly dependent on V . We tested this assump-
tion by fitting the decaying phase of the current at each
step with a double exponential:

Idecay(t) = Ileak + b1 exp(−c1t) + b2 exp(−c2t)

where t was the time since the instantaneous jump in volt-
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Figure 4. (A) The model cell used to inspect the effect
of membrane charging time. (B) Model cell ”membrane
potential” directly after a jump in command potential has
been applied and the effect of series resistance compensa-
tion at 60% and 80%. (C) Simulated INa response to in-
stantaneously changing Vm and slowly changing Vm.

age occurred. Biexponential decay of INa has been shown
in several publications [7, 8] and is illustrated for our data
in Figure 3 B. When plotted against voltage in Figure 3
A the leak current shows a strong linear component which
was consistent between runs. Some of the non-linearity
observed is likely due to non-zero stationary INa (i.e. win-
dow, late or persistent INa ), yet non-linear elements and
”memory effects” in the experimental setup can also not
be discounted. Because separating intrinsic from exter-
nal non-linearity proved difficult, we chose to ”correct” the
signal by estimating the leak current individually for each
voltage step and subtracting it from the signal. As may be
expected, incorporating uncertainty in the baseline level of
individual steps into the identifiability check resulted in an
unidentifiable model. A better strategy may be to test each
cell twice, adding a channel blocker on the second run and
subtracting the results.

The cell membrane has a considerable capacitance,
which may lead to a significant delay before the voltage
specified by the protocol is reached. To investigate this
effect and the amplifier’s ability to compensate for it (so-
called ”series resistance compensation”) we performed ex-
periments on the model cell circuit shown in Figure 4 A. In
these experiments, the cell (without ion channels) was rep-
resented as a parallel membrane capacitance (22pF ) and
resistance (500MΩ). The patch clamp amplifier is con-
nected at terminal A1 via an access resistance of 22MΩ.
An estimate of the voltage seen by the cell membrane is ob-
tained by connecting a second amplifier in voltage record-



ing mode to terminal A2.
Figure 4 B shows the model cell’s ”membrane poten-

tial” after a 10 mV step in the command potential. Series-
resistance compensation at 60% and 80% levels improves
the response time but cannot fully eliminate it, while still
higher levels lead to oscillations in the circuitry. Based on
these qualitative results, we updated our simulations of the
patch clamp experiment to separate command potential Vin

from the membrane potential: V̇ = A × (Vin − V ). Here,
a value of A = 3ms−1 gave a response similar to that seen
in the model cell experiments. The simulated difference in
current response to our protocol for A = 3 is illustrated
in Figure 4 C. These results are in line with similar ex-
perimental findings [9] and clearly demonstrate to need to
account for membrane charging time in INa voltage-step
protocol simulations. Adding A to the parameters tested in
our identifiability check revealed that A can be identified
alongside the original parameters.

With a modified, noise-aware identifiability check in
place, we re-tested the possibility of uniquely identifying
the model given in [3]. To eliminate issues due solely to
our protocol we implemented the first protocol given in
[3], which is is essentially a sequence of well established
activation, inactivation, deactivation and reactivation ex-
periments. This revealed two new issues with the model:
Firstly, the occupancy of the second slow inactivation state
IS2 stayed consistently low, even after the long inactivat-
ing steps it is meant to account for. Consequently param-
eters relating exclusively to this state were unidentifiable
which we resolved by dropping this state from the model.
Secondly, two of the four parameters describing activation
were unidentifiable, which could only be resolved by set-
ting their values to fixed multiples of the two identifiable
ones. The resulting model showed no significant difference
in current response when stimulated with either the full or
the shortened protocol and both protocols could fully iden-
tify its parameters.

A parameter estimation routine run with the reduced
model and updated formulation for V produced only a
small improvement over the original results. This suggests
that, rather than being the result of unidentifiable param-
eters the failure to match the data is due to other issues
with either the model or the post-processed experimental
results. Manually tweaking model parameters to create a
slower current decay created a significant non-zero current
at the end of certain voltage steps. Since this would have
been removed by the leak correction method, it is likely
that this is, at least in part, to blame.

4. Conclusions

Novel, rapid protocols to uniquely identify INa Markov
model parameters can be designed to account for a noise
threshold, capacitance artifacts and membrane charging

time. Leak currents can not be dealt with numerically,
but should be eliminated experimentally, for example by
subtracting a signal with blocked INa . While the methods
described here can only be used to locally verify a model’s
identifiability, the new models created this way can be used
to design new, more realistic checks of identifiability, lead-
ing to an iterative and hopefully convergent process of con-
tinuous improvement.
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